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Abstract 

 The ability to fly satellites in close formations represents a capability that could 

revolutionize the way satellite missions are designed in the future.  This study examines 

three of the primary formation flying designs and characterizes the affect that an 

anomalous satellite with a slightly different cross-sectional area would have on the 

stability of the formation.  Following the characterization of the effects, a controller is 

implemented to mitigate the cross-sectional area differences between the satellites.  With 

the addition of a straightforward controller, small cross-sectional area differences can be 

mitigated and corrected such that the satellites will remain in close proximity and in some 

cases the formation will remain stable. 
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CHARACTERIZING AND CONTROLLING THE EFFECTS OF DIFFERENTIAL 

DRAG ON SATELLITE FORMATIONS  

 

I.  Background 

 

 The old axiom that information is power remains one of the primary tenets of 

military operations.  The ability to observe ground events from overhead platforms can be 

traced back to the French Revolution when France organized a company of aerostiers, or 

balloonists in the spring of 1794 (Richelson, 1999).  Balloon platforms were also used 

with limited success during the American Revolution, and many scholars originally 

believed that the airplane’s primary wartime mission would revolve around aerial 

surveillance (Richelson, 1999).   When presented the opportunity to gather more 

intelligence about their adversaries military leaders throughout history have jumped at the 

idea.   

 Upon the Soviet launch of Sputnik on October 4, 1957, the world of overhead 

surveillance changed forever.  The Sputnik launch led directly to the creation of the 

National Aeronautics and Space Administration (NASA) and pushed the United States’ 

space program into catch-up mode.  Fortunately for the United States, the gears of 

progress had already been set in motion.  On March 16, 1955, more than two years prior 

to the launch of Sputnik, the Air Force issued General Operational Requirement No. 80, 

officially establishing a high-level requirement for an advanced reconnaissance satellite. 

The document defined the Air Force objective to be the provision of continuous 

surveillance of "preselected areas of the earth" in order "to determine the status of a 



 

potential enemy's warmaking capability." (Richelson, 1999).  The Air Force program, 

originally Advanced Reconnaissance System (ARS) then renamed SAMOS, which 

evolved from this directive experienced a number of problems and delays.  Concern 

about the time schedule for SAMOS prompted President Eisenhower to approve the CIA 

reconnaissance program CORONA.  After 12 unsuccessful launches the 13th mission 

finally returned a canister of film from space that was successfully recovered by the 

United States on August 18, 1960 (Richelson, 1999).  With the success of CORONA, the 

high ground of surveillance had irreversibly been shifted to space borne platforms. 

 Modern satellite systems give the United States military an immense strategic 

advantage by providing unparalleled intelligence, surveillance, and reconnaissance (ISR) 

capabilities.  Traditionally these satellites have been large complex satellites that operate 

independently or as part of a larger formation that provides near global coverage.  These 

complex systems require extra redundancy and extremely detailed integration and test 

procedures because the failure of a single subsystem can not only impact the operability 

of the individual satellite, but also endanger the mission of the entire formation.  

However in recent years mission planners have begun to explore alternative mission 

profiles and satellite configurations that could reduce cost, size, and complexity while 

increasing imaging resolution.   

One idea that has gained credence recently is the idea of distributing the 

functionality of large satellites among a group of smaller cooperative satellites.  This 

concept involves flying a group of satellites (often called a cluster) within very close 

range of each other (250m – 5km) (Mohammed, 2001: 58).  The cluster approach offers 

mission planners much more flexibility in mission design and lifecycle planning because 
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of the ability to re-position satellites in the cluster to accomplish different missions or to 

compensate for malfunctioning members of the cluster.  It offers additional redundancy 

and the promise of graceful capability degradation.  Adding satellites to the cluster post-

initial launch is also a very real option that allows for implementing new technologies 

and enhancing cluster performance (Mohammed, 2001: 58).   

Many scientific, military, and commercial space applications are exploring the use 

of clustered satellites to perform distributed observations from space, synthetic aperture 

radar (SAR) earth mapping, magnetosphere sensing, interferometry, and a variety of 

other missions (Kitts, 1999: 217).  Many of these missions are drawn to the cluster 

approach because clusters can provide a very large virtual aperture.  Since imaging 

resolution is a function of aperture size, the larger the aperture (real or virtual) the better 

the resolution.  The separation between instruments can be used to create apertures that 

allow for orders of magnitude improvements in ISR capabilities (Kitts, 1999: 217).   

In fact several current missions are being developed to validate cluster flying 

dynamics, command and control, and other cluster specific problems.  The French MoD 

recently launched a cluster of satellites, Essaim, designed to demonstrate the electro-

magnetic signal interception feasibility from space, and the possibilities of a formation 

flying (swarm) system to prepare for coming fully operational systems (de Selding, 

2004).  The Orion mission was developed to demonstrate true formation flying using 

spaceborne carrier differential GPS aboard low-cost LEO satellites.  It is scheduled to be 

a single satellite flying in formation with the two Emerald vehicles (Bauer et al, 1999: 

379).  In addition many earth and space science mission require the use of satellite 
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constellations in order to accomplish their mission.  Some of these mission ideas will be 

further discussed later in the text. 

There are numerous mission profiles that would benefit from the use of clustered 

satellites.  A number of those profiles can be accomplished with very loose formation 

knowledge (1-100 km).  Unfortunately on the other end of the spectrum many of the 

possible science and ISR missions would require much finer knowledge and control.  

Providing the necessary accuracy of micro-meter and sometimes even pico-meter 

position knowledge presents a difficult challenge for today’s command and control 

systems (Baeur et al, 1999: 370).  Given the large distances from space down to the 

Earth, it follows that small errors in the relative positions of the clustered satellites can 

cause huge accuracy and fidelity issues with the final data.  Therefore one of the primary 

areas of research concerning clustered satellites is in the area of command and control.  

Currently there are a number of proposed solutions to the command and control problem, 

but none of them have been successfully tested to the precision necessary to achieve pico-

meter accuracy.  The technologies and algorithms for implementing these command and 

control schemes are still being refined, but given the potential cost savings and 

flexibilities that satellite clusters could offer it is only a matter of time. 

Satellites in orbit experience a number of perturbations that will test the command 

and control system of any clustered formation.  In low Earth orbit (LEO), where most of 

the Earth pointing systems will be deployed, one of the primary perturbations is 

atmospheric drag.  Atmospheric drag is a perturbing nonconservative force that acts to 

lower a satellite’s orbit while increasing its mean velocity (Vallado, 2000: 632). While 

the acceleration due to drag does not noticeably effect satellites on an hour to hour basis, 
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it is a major perturbation factor for satellites in orbits with an altitude of less than 500 km.  

It becomes even more important to understand when clustered satellites need to maintain 

separation accuracy on the order of micro meters.   

 
 
Problem Statement 
 
 Satellite clusters will ideally deploy and operate in an optimal manner every time.  

However given harsh launch environments, excessive radiation in space and a myriad of 

other issues many satellites are not deployed in the desired manner or develop problems 

after a period of operation.  An anomalous deployment or change in the physical size of a 

satellite in a cluster can be particularly difficult to deal with because of the precise 

command and control that is necessary for the cluster to operate as designed.  This study 

will investigate the effects of how differential drag among satellites in a cluster formation 

will affect the stability and configuration of the cluster.   

 

Objective 

 The objective of this research is to study the effects of drag on anomalous 

satellites within a cluster and determine how quickly the cluster formation will 

deteriorate.  This research will examine the effects of differential drag for satellites within 

an in-plane formation, an in-track formation, and a circular formation.  In addition to 

inspecting the effects of drag on these formations, a controller will be employed and 

tested to determine if a simple control mechanism may be able to alleviate the 

disturbances created by atmospheric drag on the formations. 
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II.  Literature Review 

 

Chapter Overview 

 

 There has been a surge of interest in recent years regarding the enabling 

technologies for high precision formation flying satellites.  This literature review will 

examine three of the major areas that are distinctive to formation flying (formation 

design, formation navigation & control, and inter-satellite communication) and the 

current technology situation with regard to those specific areas.  In addition it will briefly 

look at the history and current state of modeling atmospheric drag.  

  

Formation Flying Overview 

 

In addition to the advantages discussed in the chapter one, the distributed sensor 

platform that formation flying promises is becoming more and more enticing due to the 

volume and mass constraints that current launch vehicle fairings place on payloads.  

These constraints will restrict new monolithic apertures to slightly larger or the same size 

as that of the Hubble Space Telescope.  There are some image resolution enhancements 

that can be made by using segmented optics similar to the optics planned for the James 

Webb Space Telescope, however this approach is limited due to structural dynamics and 

control issues (Leitner, 2004).    
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There are three primary areas that are distinctive to the formation flying problem.  

Those areas are formation design, formation navigation and control, and inter-satellite 

communication (Leitner, 2004).    

 

Formation Design 

 

Formation design can be defined as the positioning of satellites into a desired 

geometry to meet the demands of the mission.  It is a difficult “give and take” problem 

between optimal positioning and fuel consumption.  Designing a formation that maintains 

a useful formation with very little or no fuel consumption is the ultimate goal. 

Sabol et al (2001: 271) used the relative equations of motion of two satellites 

known as Hill’s equations or the Clohessy-Wiltshire equations (Chlohessy and Wiltshire, 

1960) to examine satellite formation design.  They examined the initial Hill’s equations 

and used a detailed derivation from Vallado’s text (Vallado, 2001: 374-399) that describe 

the unperturbed motion of two bodies (in close proximity) in circular orbits as a 

preliminary design tool. 

 22 3 0x ny n x− −

y nx

=  (2.1) 
 
 2 0+ =  (2.2) 
 
 2 0z n z+ =  (2.3) 
 
After solving analytically for these and complementing the solution with numerical 

simulation of the fully nonlinear dynamics with realistic force modeling they set the 

secular term to zero through the constraint  

 0 0y x n2= −  (2.4) 
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“Then through algebraic manipulation they showed that this constraint 

results in a displaced orbit with the same energy and thus the same 

semimajor axis, as the reference orbit neglecting higher-order terms in 

eccentricity.  When the constraint is enforced Hill’s equations become 

(Sabol et al, 2001: 271)” 

 0 0( ) ( / )sin( ) cos( )x t x n nt x nt= +  (2.5) 
 
 0 0 0( ) (2 / )cos( ) 2 sin( ) 2 / 0y t x n nt x nt x n y= − − +  (2.6) 
 
 0 0( ) ( / ) sin( ) cos( )z t z n nt z nt= +  (2.7) 
 

The above equations provided the basis for Sabol’s formation flying design. 

Three of the formation flying designs that were considered in their analysis were 

the in-plane formation, the in-track formation and the circular formation.  Sabol et al 

(2001: 271) describes the in-plane cluster design as the simplest of all cluster designs.  

The formation consists of a group (2+) of satellites occupying the same orbital plane, but 

separated by mean anomaly.  This in-plane formation offers the advantages of a simple 

design, straightforward deployment, and uncomplicated control.  However this type of 

formation is limited in the style of configurations it can support and the number of 

satellites that can be deployed into a reasonable cluster (Sabol et al, 2001: 271).    
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Figure 1.  In-plane formation 
 

The in-track formation consists of satellites that all share the same ground track.  

At first this concept seems identical to the in-plane design, and it would be if the Earth 

did not rotate.  However since the Earth does rotate satellites can only follow the same 

ground track if their orbital planes are separated by a delta in the right ascension of the 

ascending node, which compensates for the rotating Earth.  This formation offers the 

advantage of identical ground tracks, but will also have a difficult time supporting 

multiple configuration shapes with numerous satellites (Sabol et al, 2001: 272). 

 

Figure 2.  In-track formation (Sabol et al, 2001: 272) 
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 The final type of formation that this study examines is the circular formation.  In 

the circular formation the satellites maintain a constant distance from each other.  For two 

arbitrary points in the cluster their will most likely be differences in inclination, right 

ascension of the ascending node, argument of perigee, and mean anomaly.  Sabol et al 

(2001: 272)  give the following insight into the circular formation design in terms of 

Keplerian mechanics, 

“Consider a circular reference orbit inclined at 90 degrees with a 

satellite at the equator (ascending node).  Now consider another 

satellite in a slightly elliptical orbit also on the equator and 

separated from the reference orbit by a small amount of ascending 

node.  The second satellite is at apogee and, therefore will fall 

behind the reference satellite as they both proceed towards the 

North Pole.  Because both orbits are polar, the satellites’ paths will 

cross at the poles, but the reference satellite reaches the pole first.  

On the other side of the North Pole, the second satellite is lower in 

altitude than the reference satellite and begins to catch up.  Both 

satellites reach their descending nodes at the same time, and the 

second satellite is now at perigee.  The second satellite continues to 

advance ahead of the reference satellite and reaches the South Pole 

first, where the paths cross once again.  On the other side of the 

South Pole, the reference satellite begins to catch up as the second 

satellite increases in altitude towards its apogee and ascending 

node.” 
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The circular formation offers two characteristics make it attractive to cluster designers.  

One advantage is that the two satellites maintain a constant distance from each other at all 

times.  The other advantage that is unique to the circular formation is that unlike the in-

plane and in-track formations the circular formation presents a two-dimensional array 

(Sabol et al, 2001: 272-273). 

 

Formation Navigation and Control 

 

   The implementation of formation flying satellites acting in harmony to achieve 

military and scientific Earth sensing objectives will require stringent control thresholds.  

Formation control is responsible for rejecting disturbances and keeping the formation in 

the desired geometry.  Formation maintenance and control at the necessary level is one of 

the more difficult problems facing the widespread deployment of clustered satellites.  

Formation control and relative navigation pose some very interesting challenges in the 

areas of (Bauer el al, 1999: 376): 

 

1. Onboard sensing of relative and absolute vehicle position/attitudes. 

2. Maneuvering, retargeting, collision avoidance, and aperture optimization 

including resource/task allocation within the fleet. 

3. Modeling the orbital mechanics and the impact of differential drag and solar 

disturbances 

4. Fleet and vehicle autonomy, including high-level fault detection and recovery to 

enhance mission robustness 
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5. Decentralized control and computation for a fleet of many (e.g. from 16 to 

hundreds) vehicles. 

6. Testbeds and simulations to validate the various sensing and control concepts. 

 

Many current spacecraft systems rely on ground based command and control to 

ensure proper positioning and attitude of individual spacecrafts.  However nearly all of 

those systems are single satellites that are widely spaced and don’t depend on the relative 

positioning data between spacecraft.  When dealing with a clustered group of satellites 

ground based command and control becomes much more cumbersome.  Attitude and 

position data are needed instantaneously.  Ground-based systems would be very intricate, 

weighed down by data, and possibly unable to provide timely corrective commands.  

Thus, a number of institutions have been focusing on developing autonomous satellite- 

based command and control algorithms and schema to facilitate clustered satellite flight 

(Bauer et al, 1999: 376).   

 Ideally, autonomous formation flying involves taking continuous position and 

velocity data that determine the state of the formation.  Those measurements are then 

used to maintain the current configuration or to transition to a new formation style 

without the application of any outside controls.  The configuration of the cluster includes 

not only the distances between all pairs of spacecraft in the cluster, but also the 

orientation of the satellites in a coordinate frame defined by the array’s internal geometry 

(Bauer et al, 1999: 376).  Initializing, targeting, and maneuvering will all task the 

autonomous command and control system in different manners such that the control 
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system must be designed and implemented to switch between the various system models 

and control schemas. 

 Cooperative formation control can be achieved in several manners.  A typical 

control design for a small number of satellites (16 or less) in formation is to employ a 

master/slave control structure.  Master/slave scenarios involve a single spacecraft that 

acts as the leader (master) and issues commands to the other spacecrafts (deputies or 

slaves).  This can be accomplished by actual commands being sent to the other members 

of the cluster or by the slaves autonomously reacting to the maneuvers of the master in 

order to maintain the proper configuration (Bauer et al, 1999: 376).  This master/deputy 

control structure works well with a small number of satellites, and can be scaled up 

slightly by dividing the cluster into a number of subsets.  However as the number of 

satellites increase the overhead becomes unbearable and the system begins to break 

down, necessitating a distributed control system when the formation is large (Bauer et al, 

1999: 376).     

 A decentralized control system demands that each node in the system process its 

own measurement data in parallel with all of the other nodes.  Detected failures then can 

be mitigated so that the cluster performance degrades gracefully (Bauer et al, 1999: 376).    

However none of these navigation and control systems have been tested and verified in a 

relative environment or for the desired amount of time that formations would stay on 

orbit. 
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Inter-Satellite Communication 

 

Along with precise navigation and control requirements, the communication link 

between the formation flyers is critical to success.  The data buses must be extremely 

robust and reliable.  There remains a substantial amount of work to be done in defining 

requirements for communication bandwidth, time synchronization, and the transfer of 

precision control commands (Francis et al, 2003).   

The importance of this system is akin to the mailman in the postal system.  

Everything else may go perfectly but nobody receives the mail without the mailman.  The 

formation control laws will all be implemented through the communication system, so a 

lack of integrity in the system will mean a loss of control that could be catastrophic even 

if it happens for only a few seconds.  This is especially true if the formation is to employ 

a decentralized command structure that relies heavily on each communication unit 

functioning flawlessly.  

 

State of the Technology 

 

Formation Design 

Sabol et al (2001: 274) also examined the relative stability of two identical 

satellites initially separated by 1 km, placed into in-plane formations and in-track 

formations.  They looked at two different cases for each formation.  The initial case was a 

100-revolution-per-seven-nodal-day repeat ground track cycle and the second situation 

involved a 14 revolution per nodal day repeat ground track cycle.  They then propagated 
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the orbit scenarios using the DSST Averaged Orbit Generator (AOG) which includes the 

following modeled perturbations: geopotential, atmospheric drag, luni-solar third body 

point mass effects, and solar radiation pressure (Sabol et al, 2001: 274).     

 The in-plane formation proved to be extremely stable in the (100:7) case and only 

showed a diversion of a few meters over a year long timeframe.  During the daily repeat 

ground track (14:1) tesseral resonance had a much greater effect and caused the satellites 

to drift nearly 0.2 km closer together over a year.  Over time (the next year) the satellites 

should drift back to near their original positions (Sabol et al, 2001: 274).   

 The in-track formation satellites share the same ground tracks so they encounter 

the same gravitational effects.  However the two satellites are in slightly different orbital 

planes so the high-density atmosphere simulation causes a slight along-track drift 

between the two satellites.  This drift can be shown to be on the order of about 50m after 

one year (Sabol et al, 2001: 274).     

 Both of these simple formation styles offer promising stable designs that should 

require minimal station keeping propulsion and maintenance.  However these studies all 

examined perfectly identical satellites in the formations, any slight differences in the 

satellites would produce different results.  

 The circular formation was also studied, albeit in a slightly different manner 

(Sabol et al, 2001: 274).  Three satellite trajectories were generated for the circular 

cluster.  Satellite one represents the center of the circular formation and the reference 

satellite.  Satellites two and three are on the circle phased at 270 degrees and 180 degrees.  

This design puts satellite two directly in front of satellite one in the in-track direction and 

satellite three to the right in the negative normal (cross-track) direction.  For their study 
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Sabol et al (2001: 274) used an orbit of 800 km and began propagating the orbit scenarios 

using the DSST AOG.  They found the propagations in the presences of perturbations 

showed that the circular formation was unstable at an altitude of 800 km.  The primary 

disrupting factor was found to be the Earth’s oblateness or the J2 effect.  The J2 effect 

disturbs the formation in two primary manners: 1) through the differential precession of 

the orbital planes and 2) through the shifting of the argument of perigee (Sabol et al, 

2001: 274-275). 

 Because satellites one and two have slightly different inclinations the secular J2 

effect causes the right ascension of the ascending node for the different orbits to precess 

at different rates.  This results in the orbital planes drifting apart and error growth in the 

normal (or cross-track) direction.  This error growth expands fairly quickly and after four 

days in the 800 km orbit the separation between satellite one and two could increase by 

up to 25% (Sabol et al, 2001: 276).  For the worst case circular formation, formation 

maintenance can cost up to 38 m/s per year per kilometer of formation radius (Sabol et al, 

2001: 276).   

Rotation of the argument of perigee is another major disruption on the circular 

formation.  This effect is independent of formation size, but the budget for maintaining 

constant argument of perigees is nearly 11 m/s per year (Sabol et al, 2001: 276).   

Given the major disrupting force that the J2 effect causes upon circular formations 

it will be necessary to make formation keeping maneuvers on a near daily basis (Sabol et 

al, 2001: 276).   
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Formation Navigation and Control 

 NASA/GSFC is currently pursuing a decentralized approach that involves using a 

stand-alone GPS point solution to maintain the spacecraft formation (Carpenter et al, 

2003: 3).  In this decentralized approach each satellite transmits and receives data to and 

from each of the other satellites in the formation.  This allows relative states to be 

computed without the need for direct measurement of the inter-satellites states.  If enough 

processor capacity is available the GPS measurement data could be processed for 

improved accuracy.  The addition of instruments that would allow one or more of the 

vehicles to take relative measurements between itself and the other formation members 

would provide additional data that could maximize the relative navigation accuracy.  This 

particular approach with the multi-faceted measurements will demand a lot of processing 

power.  In addition an approach similar to this may be necessary to obtain the necessary 

pico-meter accuracy that will be necessary for a number of the desired satellite cluster 

missions (Carpenter et al, 2003: 3). 

 Stanford University has also been developing methods for centralized and 

decentralized control of a satellite cluster.  Their team has demonstrated several 

estimation architectures that could be used in a differential carrier-phase GPS relative 

sensing for larger (>16) cluster of satellites (Corazzini et al, 1997).  They have used the 

Formation Flying Testbed at Stanford to demonstrate a multi-level cluster control system 

that includes a coordinator, a planner, and distributed regulators using a high fidelity orbit 

simulator.  A linear programming approach allows their system to rapidly solve for the 

optimal formation maneuvers using linearized group dynamics.  A portion of their 
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experimentally analyzed autonomous formation flying algorithms will be demonstrated 

on Orion (How et al, 1998). 

 Currently the NASA Goddard Space Flight Center Earth Observing 1 (E0-1) is on 

orbit and employing a manner of formation flying.  The EO-1 formation flying 

demonstration is controlled from the ground (not cross-linked) using magnetospheric 

measurements.  However it is only important that the satellites be arranged in a particular 

shape (tetrahedron) at a single point (apogee) in the orbit (Folta et al, 2002).  Similarly 

the Solar Imaging Radio Array (SIRA) mission will require only a loose control of 

positions and spacing such that all spacecraft are within a spherical region (MacDowell et 

al 2005).  These two missions are both formation flying systems, but their controlling 

schemes are loose enough that controls need to be applied only once or twice an orbit.  

 In addition, a number of other agencies are developing formation flying 

technologies and base lining clusters for use in future missions.  The European Space 

Agency has developed a sophisticated cluster formation to study the Earth’s 

magnetosphere (Roux, 1998).  The low-cost technology demonstration Orion-Emerald 

program developed by a group of universities will demonstrate the use of carrier-phase 

differential GPS as a primary sensor for formation flying (Kitts et al, 1999)(How et al, 

1998). 

 Air Force Research Laboratory’s (AFRL) technology demonstration missions 

TechSat 21 attempted to tackle some of the extreme system level challenges and 

technology hurdles that face future formation flying missions.  Their efforts uncovered 

even more technology challenges and eventually led to the program cancellation (Cobb, 

2005). 
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   For many of the envisioned formation flying missions continuous six degrees of 

freedom formation control must be implemented at levels that are orders of magnitude 

more precise than any spacecraft on orbit today.  “This will necessitate propulsion 

systems with constantly varying levels of thrust, unlike impulsive systems currently in 

use today,” (Leitner, 2004). 

 

Inter-Satellite Communication 

 Current satellite communication systems are primarily designed for uplink and 

downlink purposes.  Inter-satellite communication offers a different type of challenge that 

will require increased precision and robustness.  A full analysis of the effect of variable 

distance communication delays between formation flying satellites and how it will affect 

closed-loop control performance must be completed and evaluated (Leitner, 2004). 

 

Modeling Atmospheric Drag (Vallado, 2001: 524-537) 

Satellites orbit around the Earth based upon the laws of two-body motion 

described by Kepler.  During their orbits they experience a number of perturbations that 

affect the basic equations of two-body motion; four of the largest perturbations are  

atmospheric drag, third-body effects, Earth oblateness, and solar radiation pressure.  The 

relative importance of these effects varies greatly based upon the height of the satellite’s 

orbit.  In low Earth orbit (LEO) up to an altitude of about 500 km, atmospheric drag is the 

primary perturbation force.  The Earth’s oblateness also causes a pronounced departure 

from two body motion and is the second most pronounced perturbation for LEO 
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satellites.  When satellites move into orbits above the LEO range, solar radiation pressure 

and third-body effects begin to play a dominant effect on the orbital perturbations.   

 Atmospheric drag is caused by atmospheric particles colliding with the satellite 

and impeding the satellite’s motion.  The acceleration due to the drag force changes 

based upon the density of the particular atmosphere, and it can be expressed as: 

                                    

 ( ) 21
2

d
d

C A
A

m
vρ= −  (2.8) 

 
 
The coefficient of drag, , is a dimensionless quantity that expresses the satellite’s 

susceptibility to drag forces.  The exposed cross-sectional area, A, is the area of the 

satellite that is normal to the velocity vector of the satellite.  It can be a difficult quantity 

to estimate accurately unless the configuration and attitude of the satellite is precisely 

known.  The atmospheric density,

dC

ρ , comes from one of the numerous atmosphere 

models that are available, but is difficult to predict because of it’s variable nature.  All 

three of these quantities are difficult to accurately measure and predict so the science of 

determining precise accelerations due to atmospheric drag still suffers from some 

ambiguity.  

To accurately predict the effects of drag on satellites in specific orbits we need to 

be able to accurately model the atmosphere at the altitude of interest.  Unfortunately the 

Sun’s interaction with the upper atmosphere and the Earth’s magnetic field cause the 

properties of the atmosphere to shift and change such that there will always be a level of 

uncertainty while modeling the Earth’s atmosphere.   
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Despite the known difficulties, scientists and astronomers have developed 

numerous atmospheric density models over the past twenty years in order to meet the 

changing accuracy demands of specific projects.  Most of these models include some 

manner of exponential decay as altitude goes up.  Those models can be separated into two 

main groups:  static models and time-varying models.  Gaposhkin and Coster (1998) 

discuss many of the atmospheric density models in detail and come to the conclusion that 

no model is best for all applications.  Computing power and accuracy requirements are 

the primary deciding factors when choosing the best drag model for a particular 

application.  However more computing power does not necessarily mean better accuracy 

and other factors such as length of simulation and sections of atmosphere pertinent to the 

given experiment need to be considered when determining which atmospheric model best 

fits the application. 
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III.  Methodology 

 

Chapter Overview 

The objective of this research is to study the effects of drag on anomalous 

satellites within a cluster and determine how quickly the cluster formation will 

deteriorate.  This research will examine the effects of differential drag for satellites within 

an in-plane formation, an in-track formation, and a circular formation.  In addition to 

inspecting the effects of drag on these formations, a controller will be employed and 

tested to determine if a simple control mechanism may be able to alleviate the 

disturbances created by atmospheric drag on the formations. 

The selected approach for this research is to simulate all of the cluster formations 

with two satellites in the formation.  This approach reduces the complexities of dealing 

with numerous satellites, but allows detailed study of the anomalous satellite and its 

position relative to a control satellite.  One of the satellites in the formation is considered 

the control satellite and its orbital characteristics will remain constant throughout all of 

the experiments (unless explicitly stated).  The second satellite’s (the deputy’s) orbital 

elements will change based upon the specific scenario that is being examined. 

     

Control Satellite 

 Throughout the different test cases, the control satellite maintains constant initial 

orbital elements (excluding true anomaly).  It is orbiting the Earth in a circular orbit 

(eccentricity = 0) at an altitude of 250 kilometers in a polar orbit (inclination = π /2 
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radians).  The control satellite has a right ascension of the ascending node of zero radians 

and the simulation starts when the control satellite is on the equator (argument of latitude 

= 0). 

 

Deputy Satellite 

 The deputy satellite’s orbital elements will change for each cluster formation 

scenario that is run.  In addition to the changes in orbital elements that determine the 

specific formation style, the deputy satellite will also experience anomalies that will 

cause it to have a different cross sectional area (and thus experience a different 

acceleration due to drag) than the control satellite.   

 

Atmospheric Drag Modeling 

 

Satellites in low orbits are constantly fighting against the forces of drag, and the 

lower the orbit altitude the stronger the forces of drag.  Because satellites are fighting 

against the air particles to move forward, atmospheric drag decreases the energy of the 

satellite’s orbit.  Therefore, the acceleration due to drag is a negative (opposite of the 

satellite’s velocity vector) acceleration and it can be expressed as:                                          

                                                 

                                             ( ) 21
2

d
d

C A
A

m
vρ= −                                              (3.1) 

 

Where: 

•  is the acceleration due to drag dA
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•  is the coefficient of drag dC

• A  is the cross sectional area perpendicular to velocity vector 

•  is the mass of the satellite m

• ρ is the density of the atmosphere at position of the satellite 

•  is the magnitude of the velocity v

 

The cross sectional area perpendicular to the velocity vector can be estimated if you 

know the attitude of the satellite in relation to the direction of travel.  For this study a 

cross sectional area of 2 square meters was used for the control satellite.  This simulates a 

small to medium sized satellite with solar arrays deployed.  This study also used a cross 

sectional area of 1.5 meters squared to simulate a satellite experiencing an anomaly such 

as a partially deployed solar array.  At times in this research, a much larger cross 

sectional area difference will be used to demonstrate the effects of drag in a timelier 

manner.  The coefficient of drag is usually determined experimentally and is based upon 

the complex dependencies of shape, attitude, flow conditions, and spacecraft drag.  This 

study uses a number of 2.2, which is a typical value for satellites (Larson and Wertz, 

1991: 143).  This research uses an arbitrary mass of 100 kilograms for each satellite in 

the simulation.  This mass is the upper limit for micro-satellites. 

As discussed in the literature review there are numerous different methods for 

modeling the atmosphere and computing atmospheric density.  For this study a relatively 

simple, but accurate, exponential atmospheric model will be used (Vallado, 2001:534-

535).  This simple model assumes the density of the atmosphere decays exponentially 
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with increasing altitude.  It also assumes a spherically symmetrical distribution of 

particles, in which the density, ρ , varies exponentially according to Vallado (2001: 535): 

 

 0
0 [ ellph h
EXP

H
ρ ρ ]

−
= −  (3.2) 

 

Where: 

• 0ρ  is the reference density 

•  is the reference altitude 0h

•  is the actual altitude above the Earth ellph

• H  is the scale height 

 

By using the following table to determine values for specific bands of the atmosphere, the 

exponential atmospheric model can become quite accurate in predicting the nominal 

density at a given altitude. 
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Figure 3.  Exponential atmosphere modeling table (Vallado, 2001: 537) 
 

This atmospheric density modeling approach works sufficiently well for design level 

studies such as the one being conducted; however, highly accurate studies might choose 

to use more sophisticated and accurate models.  The atmospheric density derived from 

the above equations and tables will then be incorporated into equation 3.1 and assimilated 

into the orbit propagator. 

 

Orbit propagation 

This study uses an orbit propagator based solely on two body motion and the 

effects of drag.  Third body and non-spherical Earth perturbations (J2 effect) were not 

taken into account because the focus of this work is to understand how differential drag 

will affect satellite formations.  The primary effects these perturbations have upon orbits 
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are shifting the longitude of the ascending node and moving the argument of perigee 

(Wiesel 1997: 88).  While important, it will not significantly effect the relative position of 

satellites in an in-plane or an in-track cluster (Sabol et al, 2001: 274-275).  The J2 effect 

changes the ascending node ( ) by causing it to precess at the rate (Wiesel, 2001: 88) Ω

 

 
2

2
2 2 2

3 cos
2 (1 )

EnJ R i
a e

Ω = −
−

 (3.3) 

 
 

where: 

•  is the mean anomaly n

•  is a dimensionless number that characterizes the departure of a body from a 

true sphere, for the Earth =0.001082 

2J

2J

• ER  is the radius of the Earth 

•  is the satellite’s semi-major axis a

•  is the eccentricity of the orbit e

•  is the inclination of the orbit i

In addition the J2 effect causes elliptical orbits to rotate in their own plane at a rate of 

(Wiesel, 2001: 88): 
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As previously discussed in the literature review and to be discussed further later in this 

chapter both the in-plane and in-track formations offer formations where all of the orbits 

of the satellites in the cluster have the same inclination, semi-major axis, and eccentricity.  

This will cause  and Ω ω to remain equal for the satellites clustered in and in-plane and 

in-track formations.   

However the J2 effect does play a significant role in the stability of satellites in a 

circular cluster (Sabol et al, 2001: 274).  Equations 3.3 and 3.4 show that satellite orbits 

with different inclinations and eccentricities will experience different Ω  and ω .  As 

discussed in the literature review the J2 effect is the primary reason that the circular 

formation is unstable and a two satellite circular formation may require up to 50 m/s per 

year per kilometer of separation and daily orbital corrections to maintain a stable 

formation (Sabol et al, 2001: 276).  This particular study is done under the context that a 

controller of some type is already in place that mitigates the effect of the non-spherical 

Earth (and other less disruptive perturbations) on the circular formation.  Without the 

controller that accomplishes this task the circular formation is unstable from the very 

beginning and cannot be considered a feasible long term formation.  Thus it would not be 

important how differential drag would effect the formation.  In addition, solar radiation 

perturbations were not considered because of the low relative magnitude of the 

perturbation in comparison with atmospheric drag (Vallado, 2001: 646).  The differential 

equations expressed in the Earth centered inertial (ECI) frame used in the propagator are 

as follows:   

 

( )3 1( / ) /
2

dC A 2x r x v x v
m

μ= − − ρ                                 (3.5) 
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( )3 1( / ) /
2

dC A 2y r y v y v
m

μ= − − ρ                                (3.6) 

( )3 1( / ) /
2

dC A
z r z v z

m
μ= − − 2 vρ                                (3.7) 

 

For the initial cases that examine the effects of drag on the formation, the orbits of the 

control satellite and the deputy satellite are propagated independently and then compared 

at specific time intervals (every 10 seconds) to determine the difference in the orbits.   

 

Initial Conditions Conversion 

 The MATLAB program written for this research accepts the classical orbital 

elements as input parameters.  However in order to propagate the orbits of the satellites 

we need to convert from the initial classical orbital elements to an ECI frame.  This is 

done by first converting the traditional orbital elements into the perifocal coordinate 

system and then completing a coordinate transformation that transforms them into the 

ECI frame.    

 

Convert from Orbital Elements to ECI Frame 

 For the chosen equations of motion the coordinates of the satellites must be 

expressed in x, y, and z components in the ECI frame.  The MATLAB program written 

for this research accepts the traditional six orbital elements; inclination (i), right 

ascension of the ascending node (Ω ), eccentricity (e), argument of perigee (ω ), semi-

major axis (a), and either mean anomaly or true anomaly (υ ) and converts these elements 
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to position and velocity vectors in the perifocal coordinate system.  The perifocal position 

and velocity vectors are obtained by the following equations (Wiesel, 1997: 65) 

 

 
cos /(1 cos )
sin /(1 cos )

0
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p e
r p e

υ υ
υ υ

+⎡ ⎤
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 (3.9) 

 
where: 

• p  is the orbit semi-parameter, =   2(1 )a e−

• μ  is the gravitational parameter of the Earth 

Then, those perifocal position and velocity vectors go through a coordinate 

transformation that transforms them from perifocal coordinates to ECI coordinates.  That 

coordinate transformation can be expressed as: 

 

 eci i perifocalr R R R rωΩ=  (3.10) 

 eci i perifocalv R R R vωΩ=  (3.11) 

 

Where the rotation matrices are as follows: 
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cos( ) sin( ) 0
sin( ) cos( ) 0

0 0
RΩ

−Ω −Ω⎡ ⎤
⎢ ⎥= − −Ω Ω⎢ ⎥
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 (3.14) 

   

ECI to RTN 

 Traditionally two satellite motion has been expressed in the Radial, Tangential, 

Normal (RTN) frame with one (the control satellite in this case) of the satellites 

representing the origin of the coordinate system.  In order to transform coordinates 

expressed in the ECI frame to coordinates in the RTN frame, the argument of perigee, the 

right ascension of the ascending node, the true anomaly, and the inclination of the orbit 

must be known.  The only one of these elements that varies over the course of the orbit is 

the true anomaly and it can be calculated by 

 

 ( ( / ))2rem T Pυ π=  (3.15) 
 

where: 

• υ  is the true anomaly 
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• T is the time passed since beginning of simulation 

• P is the orbital period 

This process will determine the true anomaly of the given satellite at the desired instant in 

time.  Therefore the position and velocity vectors in the ECI frame can be converted to 

the RTN frame by the following transformations 

 

 RTN i ecir R R R R rω υΩ=  (3.16) 

 RTN i eciv R R R R vω υΩ=  (3.17) 

 

where the rotation matrices are as follows: 
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In-Plane Formation 

 For the in-plane formation the deputy satellite has all of the same initial 

conditions as the control satellite except that it is a pre-determined distance (1 km for this 

study) behind the control satellite in the same orbital plane.  So the following constraints, 

expressed in RTN frame coordinates, must be met for the satellites to meet the in-plane 

formation criteria:  

  

( ) 0x t =  (3.22) 

0( )y t y=  (3.23) 

( ) 0z t =  (3.24) 

 

The argument of latitude separation can be determined by inputting the desired separation 

distance between the master and deputy satellites into the following equation 

 

 du s r=  (3.25) 

 

where: 

•  is the argument of latitude of the deputy satellite  du

•  is the separation distance between the deputy and control s
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•  is the orbital radius r

 

In-Track Formation 

 For the in-track experiments the deputy satellite not only has a different argument 

of latitude, but it also has a different right ascension of the ascending node such that its 

ground track matches that of the control satellite’s.  Hill’s equations for this formation are 

very similar to the in-plane formation except that a cross-track oscillation represents the 

difference in right ascension of the ascending node.  Hill’s equations for this type of 

formation can be expressed in the RTN frame as: 

 

                                                   ( ) 0x t =     (3.26) 

                                                   0( )y t y=             (3.27) 

                                                   0( ) ( / ) sin cosez t n y i ntω= −  (3.28) 

 
To calculate the correct right ascension of the ascending node to keep the deputy satellite 

following the control satellite’s ground track the following equation was used  

 

    ((2 ) /(2 ))d du T Eπ π ωΩ = −  (3.29) 

 

where: 

• is the right ascension of the ascending node for the deputy dΩ

•  is the argument of latitude of the deputy satellite  du

•  is period of the orbit T
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• Eω  is the rotational rate of the Earth 

 
 

Circular Formation 

 As previously discussed the circular formation is designed such that the satellites 

will maintain a constant distance from each other.  By examining Hill’s equations the 

relation between the initial conditions must meet the following constraint equation where 

r is the radius of the formation from the reference point at the control satellite: 

 

 2 2 2 2x y z r+ + =  (3.30) 

      

 The geometric approach takes advantage of the fact that the relative motion in the 

radial/tangential planes (x/y) is fixed in eccentricity.  By substituting the constraints into 

Hill’s equations the following relations are found.  

  

0 2 0y nx= −  (3.31) 

0 02 /y x n=  (3.32) 

0 3 0z x= ±  (3.33) 

0 3 0z x= ±  (3.34) 

 

The first two equations set the along track (tangential) drift and offset to zero.  The 

second two equations must be of the same sign for any particular case.  These constraints 

demonstrate that there are two planes in which a circular formation is possible.   

 35



 

 

Initial Conditions (Circular Orbit) 

 

For the test scenario the design will mimic the design presented by Sabol, et al 

(2001: 272) in their paper and recounted earlier in the literature review.  The reference 

orbit is circular and inclined at 90 degrees with the satellite at the equator (ascending 

node).  The deputy satellite is also at the equator, but at its ascending node and in a 

slightly elliptical orbit.  The two satellites are also offset by a small amount of right 

ascension of the ascending node.  Given this type of formation where both satellites have 

the same inclination, it also helps to diminish the disruptive effects of the Earth’s 

oblateness.   

In order to ensure that both satellites in the circular formation have the same 

period (and thus will not quickly drift apart) it is essential to the formation stability that 

all satellites in the formation have the same orbital energy.  Therefore to set the initial 

conditions of the control satellite and the deputy satellite use the energy equation 

 

 21
2

E v
r
μ

= −  (3.35) 

 

and set the energy of the control satellite equal to the energy of the deputy satellite.  For 

the initial conditions in our test scenario, the difference in position is due to differences in 

the radial and normal direction and the difference in velocity is solely due to a delta in the 

tangential direction.  Setting the energy (and consequently the period) of the two orbits to 
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equal values ensures that the satellites will remain in the same vicinity and that tiny 

differences in the orbital energy will not interfere with the simulation. 

 

 

Controller (Ogata, 1970: 156-157) 

 An automated controller compares the actual value of the system to the desired 

value, determines the difference, and produces a modifying control that will minimize or 

eliminate the difference.  In this experiment a proportional and integral controller will be 

used help keep the clustered satellites in formation.  For a controller with a proportional 

control action the relationship between the output of the controller m(t) and the actuating 

error signal e(t) is: 

 

 ( ) ( )pm t K e t=  (3.36) 

 

where pK  is termed the proportional sensitivity or the gain.  This type of system can be 

used in many different environments, but whatever the actual mechanism and operating 

power, the proportional controller is basically an amplifier with an adjustable gain. 

 In addition to the proportional control action, an integral control action is also 

employed such that the control of the satellite will become more stable.  In a controller 

with integral control action, the rate of change of the controller output m(t) is  

proportional to the actuating error signal e(t): 

 

( ) ( )i
dm t K e t

dt
=  (3.37) 
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For the simulations done in this experiment the following values were chosen to obtain 

fairly well controlled results: 

 

 

150000pK =  (3.38) 

 20000iK =  (3.39) 

 

This controller is then used to continuously alter the cross sectional area of the deputy 

llite so that it remains consistent with the cross sectional area of the control satellite.  

this case, it has been applied to a non-linear system and thus stability cannot be assumed.   

uring the s

sate

This controlling action should mitigate the differential drag that was originally present 

and allow the satellites to remain relatively close. 

 This type of control (proportional-integral) is typically used for linear systems.  In 

D cenarios tested for this thesis the controller performed well despite operating 

outside of its intended environment.  If this technique is pursued in the future, it may be 

necessary and prudent to perform a more rigorous analysis.  
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IV.  RESULTS 

 

Chapter Overview 

 This section is broken down into two primary parts.  The first part deals with how 

drag affects satellites in each of the three discussed formations (in-plane, in-track, and 

circular).  Plots and analysis will be included that illustrate how the formation is reacting 

over a period of time.  Generally the analysis and plots will be over a ten hour period; 

however certain configurations will require longer observation periods in order to see the 

disturbing effects.  The second part of this chapter will focus on using a controller to 

alleviate the drift that the differential drag is causing between the satellites in the cluster. 

 

Un-Controlled Formations 

 

In-Plane Formation 

 The first formation examined in this research is the in-plane formation.  As 

expected, when there is a differential drag force present between the two satellites in an 

in-plane formation they begin to move apart and will continue to move further and further 

apart along an ever-increasing curve.  The following graphs show the separation between 

the two satellites in the radial, tangential and normal directions as well as the total 

separation. 
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Figure 4.  In-plane radial separation 
 
 
The radial direction separation in the in-plane formation begins to slowly grow as the 

differential drag between the control and deputy satellites causes the control satellite to 

speed up and enter a slightly lower orbit.  Figure 4 shows that after ten hours the radial 

separation is 6.5 meters and growing at a steady rate.  This separation is in the radial 

direction and means that the control satellite now has a slightly smaller semi-major axis 

and thus a different period.  The separation in this direction will continue to grow linearly 

unless some type of contrary force can be applied or the differential drag can be 

equalized.   
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Figure 5.  In-plane tangential separation 
 
 
Originally the two satellites are one kilometer apart in the tangential direction in the in-

plane formation.  However because the satellite in the formation lead (the control 

satellite) has a slightly larger cross sectional area due to an anomaly on the deputy 

satellite it will experience a larger (negative) acceleration due to drag.  This will cause the 

control satellite’s semi-major axis to decrease and force it to speed up.  As the control 

satellite continues to accelerate away from the deputy the tangential separation will 

continue growing at an ever-increasing rate. 
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Figure 6.  In-plane normal separation 
 

The in-plane formation calls for two satellites to be in the same plane and separated by 

mean anomaly.  Their separation in the normal direction should remain at zero since drag 

acts solely in the orbital plane and no other perturbing forces were considered.  Figure 6 

demonstrates that the satellites do maintain their separation of zero in the normal 

direction. 
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Figure 7.  Total separation between satellites (in-plane) 
 

Because the two satellites occupy the same orbital plane, their separation distance will be 

solely in the radial and tangential directions (as shown in Figure 4, Figure 5, and, Figure 

6).  In addition, as drag begins to affect the control satellite more than the deputy satellite, 

the control satellite will begin to speed up, decrease orbital altitude, and move away from 

the deputy satellite at a faster and faster rate.   
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In-Track Formation 

The in-track formation radial direction separation begins to slowly grow as the 

drag on the control satellite slowly pulls it closer to Earth.  Figure 8 shows that after ten 

hours the radial separation is 6.5 meters.  This separation is in the radial direction and 

means that the control satellite now has a slightly smaller semi-major axis and thus a 

different period.  The separation in this direction will continue to grow linearly unless 

some type of contrary force can be applied or the differential drag can be equalized.   

 

 

Figure 8.  In-track radial separation 
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Figure 9.  In-track tangential separation 
 

While the radial separation is slowly growing, the tangential separation is also growing at 

a similar pace for the first ten hours.  However because the tangential separation is 

growing along a quadratic curve it will soon become the dominant direction of 

separation.  As the periods of the two satellites diverge, the satellite with a larger cross 

sectional area (control satellite in this case) will begin to speed up and pull farther and 

farther away from the deputy satellite.  The control satellite will continue to accelerate 

away from the deputy satellite and the tangential separation will continue to increase at 

an ever-increasing rate.  
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Figure 10.  In-track normal separation 
 

Because the two satellites have slightly different ascending nodes, their separation in the 

normal direction is periodic, with a period equal to that of the orbits.  This is illustrated in 

Figure 10.  The magnitude of the separation will vary depending on the altitude of the 

orbits.  Higher satellite orbits will increase the magnitude of the separation (assuming 

their initial separations are equal in each case).  
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Figure 11.  In-track 3-D (100 hours) 
 

Figure 11 demonstrates how the in-track formation changes over 100 hours.  As 

expected, the tangential separation becomes the dominant direction of separation. 
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Circular Formation  

 For the circular formation the orbits were also initially propagated for 10 hours.  

However, some of the motion was not easily discernable over the ten hour period so 

additional plots are included with different parameters to show the motion of the satellites 

in the circular formation. 

 

Figure 12.  Circular radial separation 
 

As previously described, in the circular formation both the deputy and control satellite 

have the same period but the deputy satellite has a slightly eccentric orbit that causes it to 

oscillate around the control satellite in regards to the radial direction.  The chosen radial 

separation at the beginning of the simulation was 0.5 km.  Because the deputy satellite 

was at apogee, that separation distance should also be the maximum separation.   
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 Given the scale of Figure 12, and the small difference in cross sectional areas 

between the control and deputy, it is difficult to discern any change in maximum 

separation between the two satellites.  To better illustrate how the formation will change 

over time the cross sectional area difference is exaggerated in the case shown in Figure 

13 to illustrate how the formation will change over time as the differential drag affects 

the formation. 

      

Figure 13.  Circular radial separation (exaggerated) 
 

The control satellite’s altitude drops faster than the deputy’s altitude because of the 

greater deceleration due to drag that it experiences.  As the semi-major axes change the 

radial separation between the two satellites will increase.   
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Figure 14.  Circular radial separation (100 hours) 
 

It is not obvious from Figure 14 that the radial separation is changing over the 100 hour 

time period because of the large scale that must be used to show the radial separation 

distance oscillating.  However in Figure 15 the top edge of the plot is amplified so that it 

becomes apparent that the separation distance in the radial direction is increasing.   
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Figure 15.  Circular radial separation zoomed (100 hours) 
 

The radial separation is not growing quickly, but it is growing.  Over the 100 hour 

propagation time the radial separation grew by slightly less than two meters.  This change 

is expected because of the differential drag forces that the two satellites are experiencing. 
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Figure 16.  Circular tangential separation 
 

At the start of the simulation both the control and deputy satellite have the same semi-

major axis.  The control satellite is in a circular orbit and the deputy is in slightly 

elliptical orbit so their tangential separation will oscillate depending on where the two 

satellites are located in their respected orbits.  Their maximum separation will occur 

when the deputy satellite is either at apogee or perigee. 

Given the scale of Figure 16, and the small difference in cross sectional areas 

between the control and deputy, it is difficult to discern any change in maximum 

tangential separation between the two satellites.  To better illustrate the changes to the 

formation over time a graph with exaggerated parameters is shown in Figure 17. 
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Figure 17.  Circular tangential separation (exaggerated) 
 

The tangential separation in the circular formation begins to grow in a similar manner to 

the tangential separation in the in-plane and in-track formations.  However because of the 

elliptical nature of the deputy’s orbit there is an oscillation in the separation distance.  

The control satellite continues to drop in altitude due to the drag deceleration and as it 

drops it accelerates away from the deputy satellite.  Therefore the faster the control 

satellite goes, the farther back the deputy will fall and the tangential separation will 

continue to grow along a quadratic curve unless the differential drag can be corrected.  
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Figure 18.  Circular tangential separation (100 hours) 
 

Even with the initial cross sectional areas (control = 2 meters squared and deputy = 1.5 

meters squared) a major change in the tangential separation is evident if the orbits are 

propagated out over 100 hours.  The distance continues to oscillate around a mean value, 

but as more time passes the mean value of the oscillation slowly drifts away from zero.  

After 100 hours the center of the oscillation has drifted nearly 500 meters away from the 

starting position.  The tangential separation quickly becomes the dominant direction of 

separation in the circular formation.   
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Figure 19.  Circular normal separation 
 

Because the two satellites have slightly different ascending nodes, their separation in the 

normal direction is periodic with a period equal to the orbital period.  This is illustrated in 

Figure 19.  Because the drag force acts in a direction opposite the velocity vector, and 

both the control and deputy satellites are in a polar orbit there should be no appreciable 

change to the normal separation over the life of the formation.  
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Figure 20.  Circular tangential separation (exaggerated) 
 

Looking at the separation in the normal direction, Figure 20 confirms the belief that 

differential drag will not appreciably affect the separation in the normal direction.      
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Figure 21.  Circular tangential separation with small drag differences (10 hours) 
 

Figure 21 is a three dimensional plot of the motion of the two satellites in a circular 

formation.  The control satellite has a cross sectional area of 2 meters squared and the 

deputy has a cross sectional area of 1.5 meters squared.  The circular formation appears 

to maintain its integrity pretty well for the first ten hours of the simulation.  Figure 22 and 

Figure 23 show the motion of the formation over 100 hours using the same cross 

sectional areas for the control and deputy satellites. 
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Figure 22.  Circular 3-D separation with small drag differences (100 hours) 
 

Figure 22 is a three dimensional plot of the motion between the two satellites in the 

circular formation over a 100 hour time period.  Despite the differential drag situation the 

formation still maintains a somewhat circular formation; however it is obvious that the 

formation is beginning to degrade. 
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Figure 23.  Circular 3-D separation with small drag differences rotated (100 hours) 
 

Figure 23 shows the same case as Figure 22 from a different angle.  In this figure (Figure 

23) it is clear that the formation degrades primarily in the tangential direction.  Over time, 

the tangential separation will continue to dominate the total separation distance.   
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Figure 24.  Circular 3-D separation (exaggerated, 10 hours) 
 

Earlier in this section a few plots were displayed where the control and deputy satellites 

had exaggerated differences in their cross sectional areas (500 meters squared vs. 1.5 

meters squared).  Figure 24 shows a three dimensional combination of those graphs.  

Once again it is clear that, as the control satellite loses altitude and speeds up, it will 

cause ever increasing separations in the tangential direction.    
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Controlled Formations 

 The previous section displayed graphs and analysis describing how different 

formations reacted to satellites in the formation experiencing different drag forces.  In all 

cases it was obvious that over a period of time the satellites fell out of formation as their 

positions continued to diverge.  This presents a problem for formations whose 

deployment does not go perfectly.   

 If one satellite in the formation has a solar array that does not completely deploy, 

or a piece of thermal blanketing comes loose, or an antenna is bent slightly, or any 

number of other things happen that change the physical configuration of a satellite then 

one (or more than one) of the satellites in the formation will have a slightly different 

cross-sectional area than the normal and it will experience a different acceleration due to 

drag  This differential drag will eventually disrupt the configuration of the cluster and 

possibly jeopardize the mission of the clustered satellites.   

 However, if this slight difference in cross sectional area can be corrected then the 

two satellites will not experience the differential drag forces and they will remain in the 

formation (subject to other perturbations).  In order to accomplish this effect a 

proportional and integral controller was introduced into the code.  The controller 

compares the specific mechanical energy of the control’s and deputy’s orbit and then 

assigns a cross sectional area to the deputy satellite that is proportional to the energy 

difference.  This type of controller could be implemented on a satellite by adding drag 

plates that can be shifted to different angles in relation to the velocity vector to change 

the satellite’s cross sectional area.   Unless otherwise specified all of the following  
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graphs have been generated using the following controller gains for the proportional and 

integral controllers:  

  150000pK =  (4.1) 

 20000iK =  (4.2) 

In addition, a controller with much smaller gains will be characterized on the in-plane 

scenarios to determine if a less capable controller can still maintain the desired 

configurations.  This controller has proportional and integral gains of: 

 15pK =  (4.3) 

 2iK =  (4.4) 
 
When the controller gains specified by equations (4.3) and (4.4) is used to generate 

graphs the proportional and integral control values will be specified on the graph. 

 

Controlled In-Plane Formation 

The controller discussed above and in the methodology chapter was used to change the 

cross sectional area of the deputy satellite in the following graphs.  The initial values for 

cross sectional areas (1.5 meters squared for the deputy and 2 meters squared for the 

control) are displayed on each graph.   
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Figure 25.  In-plane radial separation with controller (100 hours) 

 

In the previous uncontrolled example for the in-plane formation there was an obvious 

divergence between the control and deputy satellite after 10 hours.  In this case the 

scenario was run for 100 hours and the controller demonstrates the ability to correct for 

the drag differences and keep the formation close together in the radial direction. 
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Figure 26.  In-plane tangential separation with controller (100 hours) 
 

For the uncontrolled in-plane formation the tangential separation began to quickly grow 

and continued growing along a quadratic curve.  However, with the addition of the 

controller, the tangential separation stays within centimeters of the starting separation (1 

km). 
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Figure 27.  In-plane radial separation with controller (100 hours) 
 

The separation in the normal direction did not increase in the uncontrolled scenario so 

there is no reason to believe that it will change in the controlled scenario.  The above 

graph demonstrates that the normal separation remains right at zero as expected.  
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Figure 28.  In-plane tangential vs. radial separation with controller (100 hours) 
 

As expected when the tangential and radial separation plots are combined, it is easy to see 

that the formation is stable when the controller is functioning properly.  A three- 

dimensional plot is not necessary because the separation in the normal direction is zero 

for all intents and purposes. 
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Figure 29.  Cross sectional area vs. time maximum control (100 hours) 
 

Figure 29 shows how the controller alters the deputy satellite’s cross sectional area such 

that the orbits of the control and deputy satellites have the same energy.  Because this 

particular controller is capable of producing large gains, the deputy satellite changes 

cross sectional area at a rapid pace and the separation distances can be kept to a 

minimum.  In addition, as this controller continues to operate it will require less drastic 

cross sectional area changes and continue to oscillate closer to the cross sectional area of 

the control satellite.  The controller used for this study only used proportional and 

integral control; however, the addition of a derivative control and further tuning of the 

controller gains would both help dampen the oscillation and allow the cross sectional area 

to settle down much more quickly (Ogata, 1970: 157).  The derivative control action has 
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an anticipatory character and is only effective during transition periods (Ogata, 1970: 

158).   

The next step for examining the controlled in-plane formation involves examining 

how the formation will react to a controller that is not capable of generating large enough 

gains to immediately correct for the differential drag.  The following graphs were 

propagated over longer periods of time so that the affect of the controller could be better 

characterized.  The cross sectional areas displayed on the graphs are the initial cross 

sectional areas, however because the controller adjust the cross sectional areas it will 

change constantly throughout the simulation.  The change in cross sectional area is 

presented in a later graph. 

 

 

Figure 30.  In-plane radial separation with minimum control (500 hours) 
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As the control satellite’s orbit lowers the controller must adjust the cross sectional area of 

the deputy satellite such that both orbits have the same energy.  To do this the controller 

increases the cross sectional area of the deputy satellite.  The less powerful controller 

employed in this case cannot adjust the cross sectional area immediately (as the previous 

controller did).  As the controller adjusts the cross sectional area it puts the deputy 

satellite into a slightly elliptical orbit so that the two satellites will maintain the same 

orbital energy.  This causes the radial separation of the two satellites to vary periodically 

over a period of ~200 hours. 

 

 

Figure 31.  In-plane tangential separation with minimum control (500 hours) 
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The tangential separation between the two satellites follows a plot very similar to the 

radial separation plot.  It is slowly increasing as the controller increases the cross 

sectional area and then slowly moves back toward the nominal separation.   

 

 

Figure 32.  In-plane normal separation with minimum control (500 hours) 
 

The normal separation continues to be a non-issue and for all intents and purposes it can 

be treated as zero.   
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Figure 33.  Cross sectional area vs. time with minimum control (500 hours) 

 

At the initiation of the scenario, the control satellite has a larger cross sectional area than 

the deputy satellite and thus the controller begins to increase the cross sectional area of 

the deputy satellite in an attempt to equalize the orbital energies.  By the time the 

controller has equalized the cross sectional areas of the two satellites the control satellite 

is already in a lower orbit.  Hence, the controller continues increasing the cross sectional 

area of the deputy satellite as it works toward equalizing the orbital energies.  When the 

deputy satellite’s cross sectional area reaches approximately 2.5 meters squared the 

orbital energy of the two orbits are equal; however, the controller cannot reduce the cross 

sectional area of the deputy fast enough to keep the energies equal.  Because the deputy 

satellite has a larger cross sectional area than the control satellite it will fall into a slightly 

lower orbit and the controller will begin to reduce the cross sectional area of the deputy 
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until it reaches 1.5 meters squared again.  During this time the tangential separation is 

being reduced and the two satellites are moving back to the nominal separation of 1 km.  

However when the satellites reach the nominal separation of 1 km the cross sectional 

areas are also back at their initial values and the entire process starts over.  Thus the 

periodic motion shown in the radial and tangential separation plots is also mirrored in the 

cross sectional area versus time plot that is displayed above.   

 This periodic motion could possibly be mitigated with the addition of a derivative 

control action (sometimes called rate control), or by better tuning the pK  and  gains.  

The derivative control action has an anticipatory character and is effective during 

transient periods; however the derivative control can never be used alone and must be 

implemented in conjunction with a proportional or a proportional plus integral control 

action (Ogata, 1970:  157).   

IK

 

Controlled In-Track Formation 

 The in-track formation demonstrated a diverging tendency similar to the in-plane 

formation.  When the controller was added to the scenario it corrected the divergence but 

the results were slightly different.  The in-track scenarios were all propagated using the 

original controller with large gains. 
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Figure 34.  In-track radial separation with controller (100 hours) 
 

In the uncontrolled scenario the radial separation changed by about 6.5 meters over a 10 

hour time period shown.  When the controller was employed, it reduced the maximum 

separation to less than one centimeter as shown by the above graph.  If the controller is 

allowed to continue working, the maximum separation will continue to decrease over 

time. 
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Figure 35.  In-track radial separation with controller (100 hours zoom in) 
 

When the in-track scenario was propagated over 100 hours, it becomes obvious that the 

radial separation will continue to decrease as the controller is allowed to operate and 

slowly reduce the oscillation to a near zero value. 
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Figure 36.  In-track tangential separation with controller (100 hours) 
 

In the uncontrolled scenario the tangential separation began to grow at an ever increasing 

pace after a few hours; however, when the controller was implemented, the separation 

could be contained to a negligible value. 
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Figure 37.  In-track tangential separation with controller (100 hours zoom in) 
 

Propagating the in-track scenario over 100 hours and zooming in to the area of interest 

yields Figure 37.  This graph is identical to Figure 36 only with a smaller range of values 

along the Y-axis.  Clearly, as the controller continues to operate, the tangential separation 

will settle down closer and closer to a one kilometer separation.   
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Figure 38.  In-track normal separation with controller (10 hours) 
 

For the in-track formation the only differences between the orbits of the deputy and 

control satellites are in the mean anomaly and the right ascension of the ascending node.  

The difference in right ascension of ascending node will cause the normal separation to 

oscillate around zero with the largest differences being when the satellites are near the 

equator.   

 A figure similar to Figure 28 could be displayed for the in-track scenario; 

however, the figure looks identical to that figure and thus has not been included.   

 

 

 

 77



 

Controlled Circular Formation 

The circular formation was tested with exaggerated differences between the cross-

sectional areas of the two satellites to show how the formation would degrade 

propagating the scenario over a reasonable amount of time.  While it is not reasonable to 

imagine two satellites identical upon launch having such a wide disparity upon 

deployment, it does illustrate the trends of the formation quite well in an easy to read and 

understand plot.  For the controlled scenarios the huge cross-sectional area differences 

will continue to be used to test the controller.   

 

 

Figure 39.  Circular radial separation with controller (10 hours) 
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For the uncontrolled scenario the separation began to expand in a noticeable manner after 

the plotted ten hour period.  However with the controller employed the radial separation 

maintains the constant oscillation that is expected of two satellites with the same semi-

major axis yet slightly different eccentricities.  

 

 

Figure 40.  Circular tangential separation with controller (10 hours) 
 

The tangential direction of separation quickly diverged from zero when tested in the un-

controlled scenario, but as expected once the controller was added to the scenario it 

settled down and oscillated around zero without diverging.  The points of maximum 

separation occur near the north and south poles (which is consistent with the design of the 

circular formation used for these scenarios). 
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Figure 41.  Circular normal separation with controller (10 hours) 
 

Once again no major changes occurred in the normal direction of the un-controlled 

scenario so no changes are expected in the controlled scenarios.  Figure 41 shows that the 

separation in the normal direction is no different than the un-controlled scenario and it 

continues to oscillate around zero depending upon which part of the orbit the satellites 

occupy at the current time.   
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Figure 42.  Circular 3-D separation with controller (10 hours) 
 

Figure 42 is a three dimensional plot of the controlled circular formation with the 

exaggerated cross-sectional area differences.  In the un-controlled scenario the tangential 

direction of separation quickly expanded and the circular formation degraded.  The 

addition of the controller has solved that problem and the circular formation remains 

stable while the controller is applied.  
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V.  Conclusions and Recommendations 

Conclusions 

 The objective of this research was to study the effects of drag on anomalous 

satellites within a cluster and determine how quickly the cluster formation will 

deteriorate.  Obviously this question depends a lot on the drag differential present 

between the satellites.  This study examined two satellites with a 25% difference in cross 

sectional area and found (as expected) that the formations quickly deteriorated and the 

primary direction of separation was in the tangential direction.  It quickly became 

obvious that none of the studied formations would be able to maintain their formation 

without some type of controlling mechanism. 

Of the three formations (in-plane, in-track, and circular) examined in this 

research, the satellites in the circular formation maintained proximity for the longest 

period of time; however, this research did not include the effects of the J2 perturbation 

which would greatly affect the stability of the circular formation.  

Many future formations will require precise satellite positioning and any small 

differences in cross sectional areas will cause the satellites to diverge from the designed 

formation.  Therefore, if some type of controlling mechanism can be implemented to 

alleviate the differential drag between the satellites, the formation may be able to retain 

its integrity and functionality for extended periods of time.   

This study implemented a controller that adjusted the cross sectional areas of the 

satellites such that the energies of the orbits would remain equal.  If this type of controller 

can be implemented with large enough gains then the differential drag can be corrected 

immediately and the formation will remain true to its design.  However if a controller 
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with smaller gains is used for the controlling actions the formations will degrade 

(depending of the cross sectional area difference) before the controller can fully correct 

the problem.  Then the satellites will remain in close proximity but the integrity of the 

formation design will not be maintained and the total separation between the satellites 

will vary from the initial separation distance to an arbitrary maximum distance based on 

the drag differential and the controller gain.  For this research, the arbitrary distance was 

20% larger than the initial separation and the separation between the two satellites varied 

along a sine curve between the initial separation and maximum separation.   

At some point satellite clusters will become imperative to the advancement of 

military ISR systems and at that point a controlling system that can compensate for drag 

differences and other perturbations will also become necessary to ensure the success of 

those systems.   

 

Recommendations for Future Research 

This research characterized the manner in which the separation between clustered 

satellites in different formations would diverge if one of the satellites experienced an 

anomaly which effected its cross sectional area.  In addition, a proportional/integral 

controller was employed to compensate for the different cross-sectional areas.  This type 

of controller is fairly straight-forward and the possibility of expanding the scope and 

complexity of the controller would be interesting.  Adding a differential control 

component to the controller and fine tuning the proportional and integral gains of the 

controller would be a logical step forward.  Further verification of the controller in a non-

linear environment may also be necessary.  Studying the dynamics and consumable 
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budgets of a formation that is forced to depend on this style of controller to maintain the 

functional formation would also be a logical step forward. 

Increasing the cross sectional area to mitigate the differential drag is a viable 

option for controlling the satellites in formation, but it may also reduce the lifetime of the 

formation (more drag = shorter lifetime).  Additional research could be done that studies 

the impact on formation lifetime.  Along those same lines, a study that examined how 

attitude control could be used to correct for differential drag would be very interesting.     

 Another possible research area is the adaptation of a more accurate atmospheric 

model into the code.  The current atmosphere model is satisfactory for the context; 

however, results obtained from a higher fidelity model would be important in the long 

run.  Along similar lines, a study that implemented the full scope of orbital perturbations 

instead of just two body motion and atmospheric drag would provide higher fidelity 

results and may uncover some different issues related to the stability and behavior of 

these formation designs. 

 In addition to the three types of formations discussed in this research, there are 

other possible formation designs that could be explored.  Other formation types will 

likely require extensive formation keeping.  Unless those hurdles can be overcome in an 

efficient manner, there may not be a need to develop a differential drag controller to be 

implemented on the formation satellites. 
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Appendix A - Characterization Code 

 
The following code was written and executed using MATLAB version 7.0.   
 
function []=orbit_propagator() 
  
%  Simulation of a satellite in orbit with two-body motion only 
  
% Initial and Final Time (seconds) 
  
t0 = 0; 
tf = 36000;  % in seconds, 100 hrs = 360000 
  
t_vec=t0:10:tf; 
  
% Initial Satellite Orbital Parameters  
  
% Orbit Altitude (Kilometers) 
  
Sat_Alt = 250; 
  
Earth_Radius = 6378.1; 
  
Sat_SemiMajor = Earth_Radius + Sat_Alt;  % Compute Semimajor Axis  
  
% Constants 
  
% Earth Gravitational Parameter (km^3/sec^2) 
  
mu = 3.98601e5; 
  
% Gravitational constant 
% Expressed in N m^2/kg^2 
  
G = 6.67e-11; 
  
% Mass of the Earth expressed in kg 
  
MassEarth = 5.9742E24; 
  
% Rotational rate of Earth (rad/s) 
  
Earth_rate = 7.2722e-5; % corresponds to 15 degrees/hour 
  
% Orbit Eccentricity 
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Sat_Ecc = 0;  % Eccentricity assumed zero 
  
% Orbit Inclination (radians) 
  
Sat_Inc = pi/2; 
  
% Right Acsension of Ascending Node (radians) 
%    Angle between vernal equinox direction and  point at which the satellite passes 
%    the equator going north 
  
Sat_RAAN = 0; 
  
% Argument of Perigee (radians) 
% Argument of Perigee undefined for circular orbit, assume zero as placeholder 
  
Sat_ArgPeri = 0;  
  
% Argument of Latitude at epoch (radians) 
%    Angle between the ascending node direction and the satellite position vector 
%    at the start time of the sim 
  
Sat_ArgLat = 0; 
  
% Argument of Latitude at epoch (radians) 
%    For an in-plane satellite that is approximately 1 km behind the 
%    control satellite.  Calculation 2pi*radius of sat orbit = 
%    circumference of orbit 
%    circumference/360 = 115.68 km/degree 
%    1/115.68 = .008644 degrees for a one km separation. 
%    .008644*pi/180 = .000150873 
  
PSat_ArgLat = 2*pi - 0.000150873;        
  
%    Angle between prime meridian and vernal equinox direction at start time of sim. 
%    This is an arbitrary assignment unless we want sim time to have some real meaning 
%    with respect to a true astronomical time system 
  
Earth_Pos = 0; 
  
% The in-track formation has satellites that occupy the same ground track. 
% The deputy satellite starts off 1 Km behind the control and in a 
% slightly different track. 
% This is accomplished by offsetting their RAAN by  
  
Period_initial = sqrt((4*(pi^2)*(Sat_SemiMajor*1000)^3) / (G*MassEarth)); 
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intrack_RAAN = (2*pi-PSat_ArgLat)/(2*pi) * Period_initial * Earth_rate;   
                                                                                                                                                                              
% Degree to Rad Conversion and reverse 
  
degtorad = pi/180; 
radtodeg = 180/pi; 
  
% Convert Initial Orbit Parameters to  
% Cartesian Position and Velocity  
% Uses "posvel" function given at end of this code 
  
[r0,v0] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, Sat_RAAN, Sat_ArgPeri, 
Sat_ArgLat, mu); 
  
[r0plane, v0plane] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, Sat_RAAN, Sat_ArgPeri, 
PSat_ArgLat, mu); 
  
[r0track, v0track] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, intrack_RAAN, 
Sat_ArgPeri, PSat_ArgLat, mu); 
  
  
state0=[r0;v0]; 
  
stateplane0=[r0plane;v0plane]; 
  
statetrack0=[r0track;v0track]; 
  
% Propagate satellite position using two-body orbit assumptions 
% Uses ode45 numerical integrator and 
% "twobody" function given at end of this code 
  
% Set max stepsize for integration.  I chose a number that 
% gives quick results without losing too much accuracy  
% over a 10 hour period of propagation 
  
options = odeset('MaxStep',50);   
  
[t,state]=ode45(@twobody,[t_vec],state0,options); 
  
staterad = state(:,1:3); 
statevel = state(:,4:6); 
  
statevellength = length(statevel); 
  
%Initialize period vector, because it changes slightly as drag effects 
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%satellite 
Pvector=zeros(statevellength,1); 
  
%Initialize RTN velocity vector 
RTNstatevel=zeros(statevellength,3); 
  
%Initialize true anomaly vector (ta) 
ta=zeros(statevellength,1); 
  
for i=1:statevellength                          
    velmag(i)=norm(statevel(i,:));  
    radmag(i)=norm(staterad(i,:));  
    
    Pvector(i,:)=sqrt((4*(pi^2)*(radmag(i)*1000)^3) / (G*MassEarth)); 
     
    % Determine the true anomaly by dividing time by period 
    % Then divide remainder by period and multiply by 2pi 
    ta(i)=(rem(t_vec(i),Pvector(i))/Pvector(i))*2*pi;  
     
    ECItoRTN = [(cos(Sat_ArgPeri + ta(i))*cos(Sat_RAAN))-(sin(Sat_ArgPeri + 
ta(i))*cos(Sat_Inc)*sin(Sat_RAAN)),... 
    cos(Sat_ArgPeri + ta(i)) * sin(Sat_RAAN) + sin(Sat_ArgPeri + ta(i)) * cos(Sat_Inc)* 
cos(Sat_RAAN),... 
    sin(Sat_ArgPeri + ta(i)) * sin(Sat_Inc);... 
    -sin(Sat_ArgPeri + ta(i)) * cos(Sat_RAAN) - cos(Sat_ArgPeri + ta(i)) * cos(Sat_Inc)* 
sin(Sat_RAAN),... 
    -sin(Sat_ArgPeri + ta(i)) * sin(Sat_RAAN) + cos(Sat_ArgPeri + ta(i)) * cos(Sat_Inc) * 
cos(Sat_RAAN),... 
    cos(Sat_ArgPeri + ta(i)) * sin(Sat_Inc);... 
    sin(Sat_Inc) * sin(Sat_RAAN),... 
    -sin(Sat_Inc) * cos(Sat_RAAN),... 
    cos(Sat_Inc)]; 
  
    RTNstatevel(i,:)= ECItoRTN*statevel(i,:)'; 
    RTNvelmag(i)=norm(RTNstatevel(i,:)); 
    RTNdiff(i)=velmag(i)-RTNvelmag(i); 
     
     
end 
  
  
timehrs=t/3600; 
  
figure(1) 
plot(timehrs, radmag) 
title('Orbit Radius of Sat#1 vs. Time(hrs)','fontsize',16,'fontweight','bold') 
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figure(2) 
plot(timehrs, velmag)    
title('Magnitude of Velocity of Sat#1vs. Time(hrs)','fontsize',16,'fontweight','bold') 
  
  
  
% Start Code for second satellite with different drag characteristics 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The in plane formation 
  
[t2,state2]=ode45(@twobody2,[t_vec],stateplane0,options); 
  
staterad2 = state2(:,1:3); 
statevel2 = state2(:,4:6); 
  
statevellength2 = length(statevel2); 
  
  
%Initialize period vector 
Pvector2=zeros(statevellength,1); 
  
%Initialize RTN velocity vector 
RTNstatevel2=zeros(statevellength,3); 
  
%Initialize true anomaly vector (ta) 
ta2=zeros(statevellength,1); 
  
%Initialize RTN position vector 
relposRTN=zeros(statevellength,3); 
  
%Initialize relative position vector 
relative_position=zeros(statevellength,3); 
  
for i=1:statevellength2                          
    velmag2(i)=norm(statevel2(i,:));  
    radmag2(i)=norm(staterad2(i,:));  
     
    Pvector2(i,:)=sqrt((4*(pi^2)*(radmag2(i)*1000)^3) / (G*MassEarth)); 
     
    % Determine the true anomaly by dividing time by period 
    % Then divide remainder by period and multiply by 2pi 
     
    ta2(i)=(rem(t_vec(i),Pvector2(i))/Pvector2(i))*2*pi;  
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    ECItoRTN2 = [(cos(Sat_ArgPeri + ta2(i))*cos(Sat_RAAN))-(sin(Sat_ArgPeri + 
ta2(i))*cos(Sat_Inc)*sin(Sat_RAAN)),... 
    cos(Sat_ArgPeri + ta2(i)) * sin(Sat_RAAN) + sin(Sat_ArgPeri + ta2(i)) * 
cos(Sat_Inc)* cos(Sat_RAAN),... 
    sin(Sat_ArgPeri + ta2(i)) * sin(Sat_Inc);... 
    -sin(Sat_ArgPeri + ta2(i)) * cos(Sat_RAAN) - cos(Sat_ArgPeri + ta2(i)) * 
cos(Sat_Inc)* sin(Sat_RAAN),... 
    -sin(Sat_ArgPeri + ta2(i)) * sin(Sat_RAAN) + cos(Sat_ArgPeri + ta2(i)) * 
cos(Sat_Inc) * cos(Sat_RAAN),... 
    cos(Sat_ArgPeri + ta2(i)) * sin(Sat_Inc);... 
    sin(Sat_Inc) * sin(Sat_RAAN),... 
    -sin(Sat_Inc) * cos(Sat_RAAN),... 
    cos(Sat_Inc)]; 
      
    RTNstatevel2(i,:)= ECItoRTN2*statevel2(i,:)'; 
    RTNvelmag2(i)=norm(RTNstatevel2(i,:)); 
    RTNveldiff2(i)=velmag2(i)-RTNvelmag2(i);  % To keep the origin around sat 1 do it 
this way 
     
    relative_position(i,:)=staterad2(i,:)-staterad(i,:); 
    relposRTN(i,:)=ECItoRTN2*relative_position(i,:)'; 
end 
  
  
timehrs2=t2/3600; 
  
  
figure(3) 
plot(timehrs2, relposRTN(:,1)) 
title('Radial Direction In-Plane ', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(4) 
plot(timehrs2, relposRTN(:,2))   
title('Tangential Direction In-Plane','fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(5) 
relative_position=state2(:,1:3)-state(:,1:3); 
plot3(relative_position(:,1),relative_position(:,2),relative_position(:,3)) 
xlabel('x', 'fontsize',16,'fontweight','bold') 
ylabel('Y', 'fontsize',16,'fontweight','bold') 
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zlabel('Z', 'fontsize',16,'fontweight','bold') 
axis('equal') 
title('Relative position','fontsize',16,'fontweight','bold') 
  
  
figure(6) 
plot(timehrs2, relposRTN(:,3)) 
title('Normal Direction In-Plane ', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
for i=1:statevellength2   
absdist(i) = norm(relposRTN(i,:)); 
end 
  
% Plots the separation between the two in-plane satellites 
figure(19) 
plot(timehrs, absdist) 
title('Separation Between Satellites(In-Plane)', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
% Start Code for satellite in an in-track orbit 
% with different drag characteristics 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[t3,state3]=ode45(@twobody3,[t_vec],statetrack0,options); 
  
staterad3 = state3(:,1:3); 
statevel3 = state3(:,4:6); 
  
statevellength = length(statevel3); 
  
%Initialize momentum vector 
Hvector3=zeros(statevellength,3); 
  
%Initialize period vector 
Pvector3=zeros(statevellength,1); 
  
%Initialize RTN velocity vector 
RTNstatevel3=zeros(statevellength,3); 
  
%Initialize true anomaly vector (ta) 
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ta3=zeros(statevellength,1); 
  
%Initialize RTN position vector 
relposRTN3=zeros(statevellength,3); 
  
%Initialize relative position vector 
relative_position3=zeros(statevellength,3); 
  
for i=1:statevellength                          
    velmag3(i)=norm(statevel3(i,:));  
    radmag3(i)=norm(staterad3(i,:));  
    Hvector3(i,:)=cross(staterad3(i,:), statevel3(i,:)); 
    eccen3(i,:)=(1/mu)*(cross(statevel3(i,:), Hvector3(i,:))-mu*staterad3(i,:)/radmag3(i)); 
     
    Pvector3(i,:)=sqrt((4*(pi^2)*(radmag3(i)*1000)^3) / (G*MassEarth)); 
     
    % Determine the true anomaly by dividing time by period 
    % Then divide remainder by period and multiply by 2pi 
     
    ta3(i)=(rem(t_vec(i),Pvector3(i))/Pvector3(i))*2*pi;  
     
    ECItoRTN3 = [(cos(Sat_ArgPeri + ta3(i))*cos(intrack_RAAN))-(sin(Sat_ArgPeri + 
ta3(i))*cos(Sat_Inc)*sin(intrack_RAAN)),... 
    cos(Sat_ArgPeri + ta3(i)) * sin(intrack_RAAN) + sin(Sat_ArgPeri + ta3(i)) * 
cos(Sat_Inc)* cos(intrack_RAAN),... 
    sin(Sat_ArgPeri + ta3(i)) * sin(Sat_Inc);... 
    -sin(Sat_ArgPeri + ta3(i)) * cos(intrack_RAAN) - cos(Sat_ArgPeri + ta3(i)) * 
cos(Sat_Inc)* sin(intrack_RAAN),... 
    -sin(Sat_ArgPeri + ta3(i)) * sin(intrack_RAAN) + cos(Sat_ArgPeri + ta3(i)) * 
cos(Sat_Inc) * cos(intrack_RAAN),... 
    cos(Sat_ArgPeri + ta3(i)) * sin(Sat_Inc);... 
    sin(Sat_Inc) * sin(intrack_RAAN),... 
    -sin(Sat_Inc) * cos(intrack_RAAN),... 
    cos(Sat_Inc)]; 
      
    RTNstatevel3(i,:)= ECItoRTN3*statevel3(i,:)'; 
    RTNvelmag3(i)=norm(RTNstatevel3(i,:)); 
    RTNveldiff3(i)=velmag3(i)-RTNvelmag3(i);  % To keep the origin around sat 1 do it 
this way 
     
    relative_position3(i,:)=staterad3(i,:)-staterad(i,:); 
    relposRTN3(i,:)=ECItoRTN3*relative_position3(i,:)'; 
end 
  
timehrs3=t3/3600; 
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figure(7) 
plot3(relposRTN3(:,1),relposRTN3(:,2),relposRTN3(:,3)) 
title('In-Track 3-D', 'fontsize',16,'fontweight','bold') 
xlabel('Radial Direction (Kilometers)') 
ylabel('Tangential Direction (Kilometers)') 
zlabel('Normal Direction (Kilometers)') 
  
figure(8) 
plot(timehrs3, relposRTN3(:,1)) 
title('Radial Direction In-Track', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(9) 
plot(timehrs3, relposRTN3(:,2)) 
title('Tangential Direction In-Track', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(10) 
plot(timehrs3, relposRTN3(:,3)) 
axis([0 10 -0.1 0.1]) 
title('Normal Direction In-Track', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
%gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%  Start code for satellite in a circular formation  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
  
% Start determining characteristics of a satellite in a circular formation 
% with the reference satellite.  All values are originally in an RTN 
% coordinate system with the reference satellite at the origin 
  
% distance (km) between reference satellite (master) and slave satellite 
  
r0circ = 1; 
  
% Mean motion is needed for the equations and we know that the two orbits 
% must have the same semi-major axis or their orbits would diverge very 
% quickly 
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ncirc = sqrt(mu/Sat_SemiMajor^3); 
  
% use equations 24-28 in Sabol paper to determine the other initial 
% conditions 
  
ynot = 0; 
xnot = 0.5; 
znot = xnot * sqrt(3); 
ydotcirc = -0.0005850427710543116;  
xdotcirc = ynot*ncirc/2; 
zdotcirc = sqrt(3)*xdotcirc;               % Use positive because slave is at apogee       
  
% Change the difference in position and velocity of the two satellites from 
% RTN coords to ECI coords 
  
diffcircpos0RTN = [xnot, ynot, znot] 
diffcircvel0RTN = [xdotcirc, ydotcirc, zdotcirc] 
  
% RTNtoECI = ECItoRTN'; 
RTNtoECI=[1 0 0;0 0 -1;0 1 0]; 
  
diffcircpos0ECI = RTNtoECI * diffcircpos0RTN'; 
diffcircvel0ECI = RTNtoECI * diffcircvel0RTN'; 
statecircpos0ECI = diffcircpos0ECI + r0; 
  
statecircvel0ECI = diffcircvel0ECI + v0; 
  
[t4,state4]=ode45(@twobody4,[t_vec],statecirc0,options); 
  
staterad4 = state4(:,1:3); 
statevel4 = state4(:,4:6); 
  
statevellength = length(statevel4); 
  
%Initialize period vector 
Pvector4=zeros(statevellength,1); 
  
%Initialize RTN velocity vector 
RTNstatevel4=zeros(statevellength,3); 
  
%Initialize true anomaly vector (ta) 
ta4=zeros(statevellength,1); 
  
%Initialize RTN position vector 
relposRTN4=zeros(statevellength,3); 
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%Initialize relative position vector 
relative_position4=zeros(statevellength,3); 
  
for i=1:statevellength                          
    velmag4(i)=norm(statevel4(i,:));  
    radmag4(i)=norm(staterad4(i,:)); 
     
    Pvector4(i,:)=sqrt((4*(pi^2)*(radmag4(i)*1000)^3) / (G*MassEarth)); 
     
    % Determine the true anomaly by dividing time by period 
    % Then divide remainder by period and multiply by 2pi 
     
    ta4(i)=(rem(t_vec(i),Pvector4(i))/Pvector4(i))*2*pi;  
  
    e_r_hat = staterad4(i,:)/norm(staterad4(i,:)); 
    e_n = cross(staterad4(i,:),statevel4(i,:)); 
    e_n_hat = e_n/norm(e_n); 
    e_t_hat = cross(e_n_hat,e_r_hat); 
     
    ECItoRTN4 = [e_r_hat; e_t_hat; e_n_hat]; 
      
    RTNstatevel4(i,:) = ECItoRTN4*statevel4(i,:)'; 
  
    relative_position4(i,:)=staterad4(i,:)-staterad(i,:); 
    relposRTN4(i,:)=ECItoRTN4*relative_position4(i,:)'; 
     
    energy4(i) = 0.5*norm(statevel4(i,:))^2 - mu/norm(staterad4(i,:)); 
end 
  
  
timehrs4=t4/3600; 
  
figure(11) 
plot3(relposRTN4(:,1),relposRTN4(:,2),relposRTN4(:,3)) 
title('Circular 3-D', 'fontsize',16,'fontweight','bold') 
xlabel('Radial Direction (Kilometers)') 
ylabel('Tangential Direction (Kilometers)') 
zlabel('Normal Direction (Kilometers)') 
  
figure(12) 
plot(timehrs4, relposRTN4(:,1)) 
axis([0 100 -0.8 0.8]) 
title('Radial Direction Circular', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
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gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(13) 
plot(timehrs4, relposRTN4(:,2)) 
axis([0 100 -1.8 1.8]) 
title('Tangential Direction Circular', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
figure(14) 
plot(timehrs4, relposRTN4(:,3)) 
axis([0 100 -1.4 1.4]) 
title('Normal Direction Circular', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Kilometers') 
gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
  
  
end % main program  
  
function statedot=twobody(t,state) 
% Equations of motion  
% for two-body orbital motion 
% does not account for any perturbations 
% 
% States: 
% Cartesian Position (states 1-3) 
% Cartesian Velocity (states 4-6) 
  
Earth_Radius = 6378.1;  
  
%  Earth Gravitational Parameter (km^3/sec^2) 
mu = 3.98601e5; 
  
% Magnitude of the radius vector 
r = sqrt(state(1)^2 + state(2)^2 + state(3)^2); 
  
% Magnitude of the velocity vector 
v = sqrt(state(4)^2 + state(5)^2 + state(6)^2); 
  
  
% All stuff I'm adding for drag 
% for a height of 250 km, (Table on 537 Vallado) 
hellp = r - Earth_Radius;            % in km 
h0 = 200;                            % in km 

 96



 

H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
  
% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho = rho0 * exp(-(r-6378.1-h0)/H);       
  
A = 2;              % area in m^2 of a 2m x 2m satellite 
Cd = 2.2 ;          % Normal value for coefficient of drag 
mass = 100;         % in kg 
  
B = (Cd*A)/mass; 
  
  
% Equations of motion 
% Since the satellite is in a polar orbit drag will only be affecting it in 
% two dimensions 
  
% multiplying the total Accel of drag times the unit vector in the  
% desired direction gives the desired Ad component  
  
statedot(1:3) = state(4:6); 
statedot(4) = -(mu/r^3)*state(1) - (1/2*B*rho*v^2*state(4)/v); 
statedot(5) = -(mu/r^3)*state(2) - (1/2*B*rho*v^2*state(5)/v); 
statedot(6) = -(mu/r^3)*state(3) - (1/2*B*rho*v^2*state(6)/v); 
  
statedot=statedot'; 
  
  
end % twobody function 
  
function statedot2=twobody2(t2,state2) 
% Equations of motion  
% for two-body orbital motion 
% does not account for any perturbations 
% 
% States: 
% Cartesian Position (states 1-3) 
% Cartesian Velocity (states 4-6) 
  
Earth_Radius = 6378.1;  
  
%  Earth Gravitational Parameter (km^3/sec^2) 
mu = 3.98601e5; 
  
% Magnitude of the radius vector 
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r2 = sqrt(state2(1)^2 + state2(2)^2 + state2(3)^2); 
  
% Magnitude of the velocity vector 
v2 = sqrt(state2(4)^2 + state2(5)^2 + state2(6)^2); 
  
  
% All stuff I'm adding for drag 
% for a height of 250 km, (Table on 537 Vallado) 
hellp = r2 - Earth_Radius;            % in km 
h0 = 200;                            % in km 
H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
  
% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho2 = rho0 * exp(-(r2-6378.1-h0)/H);       
  
A2 = 1.5;            % area in m^2 of a 2m x 2m satellite 
Cd2 = 2.2;           % Normal value for coefficient of drag 
mass2 = 100;         % in kg 
  
B2 = (Cd2*A2)/mass2; 
  
  
% Equations of motion 
% Since the satellite is in a polar orbit drag will only be affecting it in 
% two dimensions 
  
% multiplying the total Accel of drag times the unit vector in the  
% desired direction gives the desired Ad component  
  
statedot2(1:3) = state2(4:6); 
statedot2(4) = -(mu/r2^3)*state2(1) - (1/2*B2*rho2*v2^2*state2(4)/v2); 
statedot2(5) = -(mu/r2^3)*state2(2) - (1/2*B2*rho2*v2^2*state2(5)/v2); 
statedot2(6) = -(mu/r2^3)*state2(3) - (1/2*B2*rho2*v2^2*state2(6)/v2); 
  
statedot2=statedot2'; 
  
  
end % twobody2 function 
  
function statedot3=twobody3(t3,state3) 
% Equations of motion  
% for two-body orbital motion 
% does not account for any perturbations 
% 
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% States: 
% Cartesian Position (states 1-3) 
% Cartesian Velocity (states 4-6) 
  
  
Earth_Radius = 6378.1;  
  
%  Earth Gravitational Parameter (km^3/sec^2) 
mu = 3.98601e5; 
  
% Magnitude of the radius vector 
r3 = sqrt(state3(1)^2 + state3(2)^2 + state3(3)^2); 
  
% Magnitude of the velocity vector 
v3 = sqrt(state3(4)^2 + state3(5)^2 + state3(6)^2); 
  
  
% All stuff I'm adding for drag 
% for a height of 250 km, (Table on 537 Vallado) 
hellp = r3 - Earth_Radius;            % in km 
h0 = 200;                            % in km 
H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
  
% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho3 = rho0 * exp(-(r3-6378.1-h0)/H);       
  
A3 = 1.5;            % area in m^2 of a 2m x 2m satellite 
Cd3 = 2.2 ;          % Normal value for coefficient of drag 
mass3 = 100;         % in kg 
  
B3 = (Cd3*A3)/mass3; 
  
  
% Equations of motion 
% Since the satellite is in a polar orbit drag will only be affecting it in 
% two dimensions 
  
% multiplying the total Accel of drag times the unit vector in the  
% desired direction gives the desired Ad component  
  
statedot3(1:3) = state3(4:6); 
statedot3(4) = -(mu/r3^3)*state3(1) - (1/2*B3*rho3*v3^2*state3(4)/v3); 
statedot3(5) = -(mu/r3^3)*state3(2) - (1/2*B3*rho3*v3^2*state3(5)/v3); 
statedot3(6) = -(mu/r3^3)*state3(3) - (1/2*B3*rho3*v3^2*state3(6)/v3); 
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statedot3=statedot3'; 
  
  
end % twobody3 function 
  
  
function statedot4=twobody4(t4,state4) 
% Equations of motion  
% for two-body orbital motion 
% does not account for any perturbations 
% 
% States: 
% 
% Cartesian Position (states 1-3) 
% Cartesian Velocity (states 4-6) 
% 
  
Earth_Radius = 6378.1;  
  
%  Earth Gravitational Parameter (km^3/sec^2) 
mu = 3.98601e5; 
  
% Magnitude of the radius vector 
r4 = sqrt(state4(1)^2 + state4(2)^2 + state4(3)^2); 
  
% Magnitude of the velocity vector 
v4 = sqrt(state4(4)^2 + state4(5)^2 + state4(6)^2); 
  
  
% All stuff I'm adding for drag 
% for a height of 250 km, (Table on 537 Vallado) 
hellp = r4 - Earth_Radius;            % in km 
h0 = 200;                            % in km 
H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
  
% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho4 = rho0 * exp(-(r4-6378.1-h0)/H);      
  
A4 = 1.5;            % area in m^2 of a 2m x 2m satellite 
Cd4 = 2.2;           % Normal value for coefficient of drag 
mass4 = 100;         % in kg 
  
B4 = (Cd4*A4)/mass4; 
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% Equations of motion 
% Since the satellite is in a polar orbit drag will only be affecting it in 
% two dimensions 
  
% multiplying the total Accel of drag times the unit vector in the  
% desired direction gives the desired Ad component  
  
statedot4(1:3) = state4(4:6); 
statedot4(4) = -(mu/r4^3)*state4(1) - (1/2*B4*rho4*v4^2*state4(4)/v4); 
statedot4(5) = -(mu/r4^3)*state4(2) - (1/2*B4*rho4*v4^2*state4(5)/v4); 
statedot4(6) = -(mu/r4^3)*state4(3) - (1/2*B4*rho4*v4^2*state4(6)/v4); 
  
statedot4=statedot4'; 
  
  
end % twobody4 function 
  
  
function [r,v]=posvel(a,e,inc,Omg,w,nu,mu) 
%compute position and velocity vectors from classical orbital elements  
% [r,v]=posvel(a, e, inc, Omg, w, nu,mu) 
% Input all angles in radians  
% r and v output in IJK unit vectors  
% 
% if mu is not present, assume canonical units 
% 
% CIRCULAR ORBIT 
% if e=0 and inc~=0, w is not used and nu is assumed to be argument of 
% latitude (u0) 
% 
% EQUATORIAL ORBIT 
% if inc=0, Omg is not used and w is assumed to be Longitude of Periapsis 
% (PI) 
% 
% CIRCULAR, EQUATORIAL ORBIT 
% if e=0 and inc=0, Omg and w are not used and nu is assumed to be True 
% longitude (l0) 
% 
if nargin<6 
    display('Not enough input parameters') 
end 
if nargin==6 
    mu=1; 
    display('Assuming Canonical Units with Mu=1.0') 
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end 
  
if e==0 & inc~=0 
    w=0.0; 
    disp('Circular Orbit, Argument of Latitude substituted for True Anomaly') 
end 
  
if e~=0 & inc==0 
    Omg=0.0; 
    disp('Equatorial Orbit, Longitude of Periapsis substituted for Argument of Perigee') 
end 
  
if e==0 & inc==0 
    w=0; 
    Omg=0; 
    disp('Circular, Equatorial Orbit, True Longitude substituted for True anomaly') 
end 
     
% Compute orbit parameter (p) 
  
p=a*(1-e^2); 
  
% Compute Position and Velocity Vectors in Perifocal Coordinate System 
  
rp = zeros(3,1); 
rp(1) = p*cos(nu)/(1+e*cos(nu)); 
rp(2) = p*sin(nu)/(1+e*cos(nu)); 
  
vp = zeros(3,1); 
vp(1) = -sqrt(mu/p)*sin(nu); 
vp(2) = sqrt(mu/p)*(e + cos(nu)); 
  
% Rotate from Perifocal Coordinate System to IJK system 
  
% Rotation matrix for -w angle rotation about axis normal to orbit plane 
  
Rw = [cos(-w) sin(-w) 0; -sin(-w) cos(-w) 0; 0 0 1]; 
  
% Rotation Matrix for -inc angle rotation about first axis (periapsis 
% direction in PQW, which should be aligned with node direction after 
% rotation above) 
  
Ri = [1 0 0; 0 cos(-inc) sin(-inc); 0  -sin(-inc)  cos(-inc)]; 
  
% Rotation Matrix for -Omg angle rotation about third axis (normal to orbit 
% plane, which should be aligned with K after both rotations above) 
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RO = [cos(-Omg) sin(-Omg) 0; -sin(-Omg) cos(Omg) 0; 0 0 1]; 
  
% Compute Position and Velocity in IJK by rotation vectors in PQW coord 
  
r = RO*Ri*Rw*rp; 
  
v = RO*Ri*Rw*vp; 
  
  
end % posvel function 
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Appendix B - Controller Code 

 
The following code was written and executed using MATLAB version 7.0.   
 
function []=orbit_propagator() 
  
%  Simulation of a satellite in orbit with two-body motion and drag  
  
  
global variable 
  
variable.time = []; 
variable.area = []; 
  
% Initial and Final Time (seconds) 
t0 = 0; 
tf = 1800000;  % 10 hours = 36000;  1000 hours = 3600000 
  
t_vec=t0:10:tf; 
  
% Constants 
  
% Earth Gravitational Parameter (km^3/sec^2) 
  
mu = 3.98601e5; 
  
% Initial Satellite Orbital Parameters  
  
% Orbit Altitude (Kilometers) 
  
Sat_Alt = 250; 
  
Earth_Radius = 6378.1; 
  
% Rotational rate of Earth (rad/s) 
  
Earth_rate = 7.2722e-5; % corresponds to 15 degrees/hour .. expressed in rad/s 
  
Sat_SemiMajor = Earth_Radius + Sat_Alt;  % Compute Semimajor Axis  
  
% Orbit Eccentricity 
  
Sat_Ecc = 0;  % Eccentricity  
  
% Orbit Inclination (radians) 
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Sat_Inc = pi/2; 
  
% Right Acsension of Ascending Node (radians) 
%    Angle between vernal equinox direction and  point at which the satellite passes 
%    the equator going north 
  
Sat_RAAN = 0; 
  
% Argument of Perigee (radians) 
% Argument of Perigee undefined for circular orbit, assume zero as placeholder 
  
Sat_ArgPeri = 0;  
  
% Argument of Latitude at epoch (radians) 
%    Angle between the ascending node direction and the satellite position vector 
%    at the start time of the sim 
  
Sat_ArgLat = 0; 
  
% Argument of Latitude at epoch (radians) 
%    For an in-plane satellite that is approximately 1 km behind the 
%    control satellite.  Calculation 2pi*radius of orbit = circum of orbit 
%    circum of orbit/2pi, then find how many radians for 1 km separation. 
  
PSat_ArgLat = 2*pi - 0.000150873; 
  
% Earth Rotational Position (radians) 
%    Angle between prime meridian and vernal equinox direction at start time of sim. 
%    This is an arbitrary assignment unless we want sim time to have some real meaning 
%    with respect to a true astronomical time system 
  
Earth_Pos = 0; 
  
% The in-track formation has satellites that occupy the same ground track. 
% The deputy satellite starts off 1 Km behind the control and in a 
% slightly different track. 
% This is accomplished by offsetting their RAAN by:  
  
  
Period_initial = sqrt((4*(pi^2)*(Sat_SemiMajor)^3) / mu); 
  
intrack_RAAN = (2*pi-PSat_ArgLat)/(2*pi) * Period_initial * Earth_rate  
  
% Degree to Rad Conversion and reverse 
  
degtorad = pi/180; 
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radtodeg = 180/pi; 
  
% Convert Initial Orbit Parameters to  
% Cartesian Position and Velocity  
% Uses "posvel" function given at end of this code 
  
[r0,v0] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, Sat_RAAN, Sat_ArgPeri, 
Sat_ArgLat, mu); 
  
[r0plane, v0plane] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, Sat_RAAN, Sat_ArgPeri, 
PSat_ArgLat, mu); 
  
[r0track, v0track] = posvel(Sat_SemiMajor, Sat_Ecc, Sat_Inc, intrack_RAAN, 
Sat_ArgPeri, PSat_ArgLat, mu); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
% %%%%%%% Start code for satellite in a circular formation  
%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
  
% Start determining characteristics of a satellite in a circular formation 
% with the reference satellite.  All values are originally in an RTN 
% coordinate system with the reference satellite at the origin 
  
% Choose the separation in the normal direction to be 0.5km 
  
% Mean motion is needed for the equations and we know that the two orbits 
% must have the same semi-major axis or their orbits would diverge very 
% quickly 
  
ncirc = sqrt(mu/Sat_SemiMajor^3); 
  
% use equations 24-28 in Sabol paper to determine the other initial 
% conditions as follows 
  
ynot = 0; 
xnot = 0.5; 
znot = xnot * sqrt(3); 
ydotcirc = -0.0005850427710543116;          %  for a 1 km separation  
xdotcirc = ynot*ncirc/2; 
zdotcirc = sqrt(3)*xdotcirc;                        % Use positive because slave is at apogee       
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diffcircpos0RTN = [xnot, ynot, znot]; 
diffcircvel0RTN = [xdotcirc, ydotcirc, zdotcirc]; 
  
% RTNtoECI = ECItoRTN'; 
RTNtoECI=[1 0 0;0 0 -1;0 1 0]; 
  
diffcircpos0ECI = RTNtoECI * diffcircpos0RTN'; 
diffcircvel0ECI = RTNtoECI * diffcircvel0RTN'; 
  
r0circular = diffcircpos0ECI + r0; 
v0circular = diffcircvel0ECI + v0; 
  
  
  
% r0circular=[xnot;ynot;znot]; 
% v0circular=[xdotcirc;ydotcirc;zdotcirc]; 
  
  
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!% 
% Choose the type of formation you want to analyze here, and comment out 
% the othere initial conditions for the different formations     %%%%%%%%%% 
state0=[r0;v0;r0plane;v0plane;0];  % Set to look at two in-plane satellites 
%state0=[r0;v0;r0track;v0track;0];  % Set to look at two in-track satellites 
%state0=[r0;v0;r0circular;v0circular;0];   %Set to look at two circular formation sats 
  
% Note there is a 13th state above.  This state is going to 
% integrate the difference in orbital energy and is part of the controller 
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
  
% Propagate satellite position using two-body orbit assumptions 
% Uses ode45 numerical integrator and 
% "twobody_wdrag" function given at end of this code 
  
% Set max stepsize for integration.  I chose a number that 
% gives quick results without losing too much accuracy  
% over a 10 hour period of propagation 
  
options = odeset('MaxStep',50);   
  
[t,state]=ode45(@twobody_wdrag,[t_vec],state0,options); 
  
statelength = length(state); 
  
staterad1 = state(:,1:3)'; 
statevel1 = state(:,4:6)'; 
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staterad2 = state(:,7:9)'; 
statevel2 = state(:,10:12)'; 
  
d_pos = zeros(statelength,3); 
d_vel = zeros(statelength,3); 
  
for i=1:statelength                          
   
    e_r_hat = staterad1(:,i)/norm(staterad1(:,i)); 
    e_n = cross(staterad1(:,i),statevel1(:,i)); 
    e_n_hat = e_n/norm(e_n); 
    e_t_hat = cross(e_n_hat,e_r_hat); 
     
    ECItoRTN = [e_r_hat, e_t_hat, e_n_hat]'; 
  
%     RTNstatevel(i,:)= ECItoRTN*statevel(i,:)'; 
%     RTNvelmag(i)=norm(RTNstatevel(i,:)); 
%     RTNdiff(i)=velmag(i)-RTNvelmag(i); 
  
  
d_pos(i,:) = ECItoRTN*(staterad2(:,i) - staterad1(:,i)); 
d_vel(i,:) = ECItoRTN*(statevel2(:,i) - statevel1(:,i)); 
  
d_energy(i) = 0.5*norm(staterad2(:,i))^2 - mu/norm(staterad2(:,i)) - ... 
              0.5*norm(staterad1(:,i))^2 + mu/norm(staterad1(:,i));  
  
end 
  
timehrs=t/3600; 
  
figure(1) 
plot(timehrs,d_energy) 
  
figure(2) 
plot(d_pos(:,1),d_pos(:,2)) 
%axis([-0.001 0.001 -1.001 -.999])          %In-Plane parameters 
title('Tangential vs. Radial Separation In-Plane ', 'fontsize',16,'fontweight','bold') 
xlabel('Radial Separation (Km)') 
ylabel('Tangential Separation (Km)') 
  
figure(3) 
plot(timehrs,d_pos) 
  
figure(4) 
plot3(d_pos(:,1),d_pos(:,2),d_pos(:,3)) 
xlabel('Radial Separation (Km)') 
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ylabel('Tangential Separation (Km)') 
zlabel('Normal Separation (Km)') 
  
figure(5) 
plot(timehrs, d_pos(:,1)) 
title('Radial Direction In-Plane ', 'fontsize',16,'fontweight','bold') 
axis([0 500 -10e-4 8e-4])           %In-Plane parameters 
xlabel('Time (hours)') 
ylabel('Kilometers') 
gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
gtext({'kP = 15','kI = 2'}) 
  
figure(6) 
plot(timehrs, d_pos(:,2)) 
title('Tangential Direction In-Plane ', 'fontsize',16,'fontweight','bold') 
axis([0 500 -1.7 -0.5])            %In-Plane parameters 
xlabel('Time (hours)') 
ylabel('Kilometers') 
gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
gtext({'kP = 15','kI = 2'}) 
  
figure(7) 
plot(timehrs, d_pos(:,3)) 
title('Normal Direction In-Plane ', 'fontsize',16,'fontweight','bold') 
%axis([0 500 -1.5 1.5]) 
xlabel('Time (hours)') 
ylabel('Kilometers') 
gtext({'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
gtext({'kP = 15','kI = 2'}) 
  
figure(8) 
plot(variable.time/3600, variable.area) 
title('Cross Sectional Area vs. Time', 'fontsize',16,'fontweight','bold') 
xlabel('Time (hours)') 
ylabel('Square Meters') 
gtext({'Initial Conditions', 'Deputy area = 1.5m^2', 'Control area = 2m^2'}) 
gtext({'kP = 15','kI = 2'}) 
  
  
end % main program  
  
  
  
function statedot=twobody_wdrag(t,state) 
% Equations of motion  
% for two-body orbital motion 
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% and adds drag plus a drag controller 
% 
% States: 
% 
% Satellite 1 Position (states 1-3) 
% Satellite 1 Velocity (states 4-6) 
% Satellite 2 Position (states 7-9) 
% Satellite 2 Velocity (states 10-12) 
% State 13 used for controller 
  
  
global variable 
  
%  Earth Gravitational Parameter (km^3/sec^2) 
mu = 3.98601e5; 
  
Earth_Radius = 6378.1; % kilometers 
  
  
% Magnitude of the radius vector (sat 1) 
r1 = sqrt(state(1)^2 + state(2)^2 + state(3)^2); 
  
% Magnitude of the velocity vector (sat1) 
v1 = sqrt(state(4)^2 + state(5)^2 + state(6)^2); 
  
% Magnitude of the radius vector (sat 2) 
r2 = sqrt(state(7)^2 + state(8)^2 + state(9)^2); 
  
% Magnitude of the velocity vector (sat 2) 
v2 = sqrt(state(10)^2 + state(11)^2 + state(12)^2); 
  
% Drag Modeling 
% for a height of 250 km, (Table on 537 Vallado) 
% atmospheric density is based on satellite 1 altitude 
hellp = r1 - Earth_Radius;           % in km 
h0 = 200;                            % in km 
H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
  
% Drag Modeling 
% for a height of 250 km, (Table on 537 Vallado) 
% atmospheric density is based on satellite 2 altitude 
hellp2 = r2 - Earth_Radius;          % in km 
h0 = 200;                            % in km 
H = 37.105;                          % in km 
rho0 = 2.789e-11;                    % in kg/m^3  
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% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho = rho0 * exp(-(r1-6378.1-h0)/H);       
  
% compute the atmospheric density (rho) in kg/m^3 
% rho = rho0 * exp(-(hellp-h0)/H); 
rho2 = rho0 * exp(-(r2-6378.1-h0)/H);       
  
% Compute Ballistic Coefficient for satelite one 
A0 = 1.5;             % nominal area in m^2 of a micro satellite 
dA1 = 0.5;            % delta-area (from damaged satellite, for example) 
Cd = 2.2;             % Guesstimate for coefficient of drag 
mass = 100;           % in kg 
A1=A0+dA1;  
B1 = (Cd*A1)/mass;    % ballistic coefficient  
  
  
%--------- Controller  ------------------------ 
%  
% Simple controller based on the period (energy) difference between the two 
% satellites.  Computes Specific Mechanical Energy for both spacecraft and 
% then assigns an Area for satellite two that is proportional to the energy 
% difference.  If energy of satellite two is greater than satellite one, 
% increase the Area of satellite two, increasing drag, and lowering energy. 
  
% Compute Energy Difference 
  
E1 = 0.5*v1^2 - mu/r1; 
  
E2 = 0.5*v2^2 - mu/r2; 
  
delta_E = E2-E1; 
  
% Set second sat area 
  
kP = 15;  %1.5e5;   %initial value  % Proportional Controller Gain----------------------------
- 
kI = 2; % 2e4; %initial value % Integral Controller Gain------------------------- 
  
A2 = A0 + kP*delta_E + kI*state(13); 
  
variable.time = [variable.time t]; 
variable.area = [variable.area A2]; 
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B2 = (Cd*A2)/mass;  % ballistic coefficient  
  
  
% Equations of motion 
% Since the satellite is in a polar orbit drag will only be affecting it in 
% two dimensions 
  
% multiplying the total Accel of drag times the unit vector in the  
% desired direction gives the desired Ad component  
  
statedot(1:3) = state(4:6); 
statedot(4) = -(mu/r1^3)*state(1) - (1/2*B1*rho*v1*state(4)); 
statedot(5) = -(mu/r1^3)*state(2) - (1/2*B1*rho*v1*state(5)); 
statedot(6) = -(mu/r1^3)*state(3) - (1/2*B1*rho*v1*state(6)); 
  
statedot(7:9) = state(10:12); 
statedot(10) = -(mu/r2^3)*state(7) - (1/2*B2*rho*v2*state(10)); 
statedot(11) = -(mu/r2^3)*state(8) - (1/2*B2*rho*v2*state(11)); 
statedot(12) = -(mu/r2^3)*state(9) - (1/2*B2*rho*v2*state(12)); 
statedot(13) = delta_E;    % This state is needed for the integral control 
  
statedot=statedot'; 
  
end % twobody_wdrag function 
  
  
function [r,v]=posvel(a,e,inc,Omg,w,nu,mu) 
%compute position and velocity vectors from classical orbital elements  
% [r,v]=posvel(a, e, inc, Omg, w, nu,mu) 
% Input all angles in RADIANS  
% r and v output in IJK unit vectors  
% 
% if mu is not present, assume canonical units 
% 
% CIRCULAR ORBIT 
% if e=0 and inc~=0, w is not used and nu is assumed to be argument of 
% latitude (u0) 
% 
% EQUATORIAL ORBIT 
% if inc=0, Omg is not used and w is assumed to be Longitude of Periapsis 
% (PI) 
% 
% CIRCULAR, EQUATORIAL ORBIT 
% if e=0 and inc=0, Omg and w are not used and nu is assumed to be True 
% longitude (l0) 
% 
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if nargin<6 
    display('Not enough input parameters') 
end 
if nargin==6 
    mu=1; 
    display('Assuming Canonical Units with Mu=1.0') 
end 
  
degtorad = pi/180; 
  
if e==0 & inc~=0 
    w=0.0; 
    disp('Circular Orbit, Argument of Latitude substituted for True Anomaly') 
end 
  
if e~=0 & inc==0 
    Omg=0.0; 
    disp('Equatorial Orbit, Longitude of Periapsis substituted for Argument of Perigee') 
end 
  
if e==0 & inc==0 
    w=0; 
    Omg=0; 
    disp('Circular, Equatorial Orbit, True Longitude substituted for True anomaly') 
end 
     
% Compute orbit parameter (p) 
  
p=a*(1-e^2); 
  
% Compute Position and Velocity Vectors in Perifocal Coordinate System 
  
rp = zeros(3,1); 
rp(1) = p*cos(nu)/(1+e*cos(nu)); 
rp(2) = p*sin(nu)/(1+e*cos(nu)); 
  
vp = zeros(3,1); 
vp(1) = -sqrt(mu/p)*sin(nu); 
vp(2) = sqrt(mu/p)*(e + cos(nu)); 
  
% Rotate from Perifocal Coordinate System to IJK system 
  
% Rotation matrix for -w angle rotation about axis normal to orbit plane 
  
Rw = [cos(-w) sin(-w) 0; -sin(-w) cos(-w) 0; 0 0 1]; 
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% Rotation Matrix for -inc angle rotation about first axis (periapsis 
% direction in PQW, which should be aligned with node direction after 
% rotation above) 
  
Ri = [1 0 0; 0 cos(-inc) sin(-inc); 0  -sin(-inc)  cos(-inc)]; 
  
% Rotation Matrix for -Omg angle rotation about third axis (normal to orbit 
% plane, which should be aligned with K after both rotations above) 
  
RO = [cos(-Omg) sin(-Omg) 0; -sin(-Omg) cos(Omg) 0; 0 0 1]; 
  
% Compute Position and Velocity in IJK by rotation vectors in PQW coord 
  
r = RO*Ri*Rw*rp; 
  
v = RO*Ri*Rw*vp; 
  
  
end % posvel function 
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